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Abstract

This dissertation aims to introduce a new sequential Monte Carlo (SMC) based es-

timation framework for structural models used in macroeconomics and industrial

organization. Current Markov chain Monte Carlo (MCMC) estimation methods for

structural models suffer from slow Markov chain convergence, which means parame-

ter and state spaces of interest might not be properly explored unless huge numbers

of samples are simulated. This could lead to insurmountable computational bur-

dens for the estimation of those structural models that are expensive to solve. In

contrast, SMC methods rely on the principle of sequential importance sampling to

jointly evolve simulated particles, thus bypassing the dependence on Markov chain

convergence altogether. This dissertation will explore the feasibility and the potential

benefits to estimating structural models using SMC based methods.

Chapter 1 casts the structural estimation problem in the form of inference of

hidden Markov models and demonstrates with a simple growth model.

Chapter 2 presents the key ingredients, both conceptual and theoretical, to suc-

cessful SMC parameter estimation strategies in the context of structural economic

models.

Chapter 3, based on Chen, Petralia and Lopes (2010), develops SMC estimation

methods for dynamic stochastic general equilibrium (DSGE) models. SMC algo-

rithms allow a simultaneous filtering of time-varying state vectors and estimation of

fixed parameters. We first establish empirical feasibility of the full SMC approach

iv
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by comparing estimation results from both MCMC batch estimation and SMC on-

line estimation on a simple neoclassical growth model. We then estimate a large

scale DSGE model for the Euro area developed in Smets and Wouters (2003) with

a full SMC approach, and revisit the on-going debate between the merits of reduced

form and structural models in the macroeconomics context by performing sequential

model assessment between the DSGE model and various VAR/BVAR models.

Chapter 4 proposes an SMC estimation procedure and show that it readily ap-

plies to the estimation of dynamic discrete games with serially correlated endogenous

state variables. I apply this estimation procedure to a dynamic oligopolistic game

of entry using data from the generic pharmaceutical industry and demonstrate that

the proposed SMC method can potentially better explore the parameter posterior

space while being more computationally efficient than MCMC estimation. In ad-

dition, I show how the unobserved endogenous cost paths could be recovered using

particle smoothing, both with and without parameter uncertainty. Parameter esti-

mates obtained using this SMC based method largely concur with earlier findings

that spillover effect from market entry is significant and plays an important role in

the generic drug industry, but that it might not be as high as previously thought

when full model uncertainty is taken into account during estimation.

v
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1

Introduction

In recent years, structural models have become the standard tool to address research

questions in several major fields of economics such as macroeconomics and industrial

organization. The ability to capture underlying processes driving an economic phe-

nomenon using highly interpretable structural parameters can offer economists new

insights that’s not attainable with a purely statistical reduced-form model.

Structural models, however, are difficult to estimate for a number of reasons. First

of all, structural models often incorporate nonlinearity and/or non-normality in their

model assumption. Secondly, structural models often feature unobserved latent pro-

cesses, which present their own challenges in terms of model inference. Third, it’s

often computationally intensive to put a structural model into reduced-form, which

involves solving the model using numerical methods. These reasons make classi-

cal inference for structural models all but extremely difficult. In contrast, Bayesian

estimation methods are straightforward to apply and provide likelihood-based in-

ference. Recent empirical literature in macroeconomics and industrial organization

have adopted Bayesian simulation-based strategies with success, taking full advan-

tage of today’s readily available computing resources. The most common Bayesian

1
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structural estimation method currently used is an MCMC-based algorithm, typically

built around a Metropolis-Hastings random walk kernel to address non-conjugate

posterior forms. To deal with the latent processes involved, any unobserved state

variables are integrated out of the model likelihood with a particle filter. Applying

MCMC to structural estimation has a number of drawbacks, however, the biggest of

which is the well documented fact that MCMC sample chains typically suffer from

slow Markov convergence. Although advanced MCMC methods, such as Chib and

Ramamurthy (2010), have been proposed for DSGE models to address this issue,

those methods most likely will require significant tuning to work on other structural

models. There is thus a need for a general structural estimation framework that can

address this slow mixing problem.

Sequential Monte Carlo (SMC) methods, otherwise known as particle filters in

a pure state filtering context, are a class of numerical methods designed to perform

inference in general state space hidden Markov models. Unlike Kalman filters, SMC

methods don’t rely on local linearization or normal shock assumptions and can thus

better capture any inherent nonlinearities present in models of interest. This flexi-

bility is the main reason behind the ever growing popularity of SMC methods in a

diverse array of fields ranging from financial econometrics to robotics. One of the

primary problems SMC methods are designed for is a filtering problem where the

goal is to obtain posterior inference on the latent state trajectories given some noisy

observation. When embedded in an MCMC algorithm for structural parameter esti-

mation, as done in Fernndez-Villaverde and Rubio-Ramrez (2005) and Gallant, Hong

and Khwaja (2010), the importance weights of the filtered particles are used to obtain

an approximation of likelihood function. In this sense, particle filters are essentially

used as a Monte Carlo integrator to marginalize out the unobserved state variables.

Recent developments have shown that SMC methods are capable of estimating fixed

parameters in addition to state filtering. Practical SMC-based methods were pro-

2
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posed by Liu and West (2001), Storvik (2002), Fearnhead (2002), Gilks and Berzuini

(2001), and Carvalho, Johannes, Lopes and Polson (2010) among others. SMC based

estimation methods have several advantages over traditional MCMC based Bayesian

methods when applied to structural models such as DSGE models. First, SMC

methods don’t rely on Markov chain convergence and instead work on the principle

of importance sampling. For complex structural models, Markov convergence might

not be geometrically ergodic (see Papaspiliopoulos and Roberts (2008). Secondly, it

might be difficult for an MCMC algorithm to fully explore model parameter spaces

either for the slow mixing problem inherent to MCMC strategies or for model specific

reasons such as multimodel posteriors. In this scenario, a well designed SMC-based

procedure can visit parts of the posterior space that an MCMC algorithm is unlikely

to have visited. Lastly, SMC methods developed in this dissertation enjoy a level

of computational efficiency over MCMC methods by combining state filtering and

parameter learning. Depending on the application, this efficiency could translate

into significant savings in computational resources required.

This chapter will present the key concepts in the SMC literature as well as intro-

ducing parameter estimation using SMC methods.

1.1 Hidden Markov Models

General state-space hidden Markov models (HMM) are a very powerful class of mod-

els that could be adapted to a wide array of scenarios. General state-space models

are characterized by the following observation and state evolution equations

yt+1 ∼ p(yt+1|xt+1, θ) (1.1)

xt+1 ∼ p(xt+1|xt, θ), (1.2)

where we observe the Y-valued process {Yt}Tt=1, which is driven by the X -valued

latent Markov process {Xt}Tt=1, and the model parameters are collected in θ. The

3
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initial state distribution and parameter prior are denoted by p(x0|θ) and p(θ), re-

spectively. In a pure state-filtering context where the fixed parameter is known, θ

is suppressed in the above equations. Given observations y1:T , a Bayesian model

defined by equations (1.1) and (1.2) has the following likelihood function

p(y1:T |x0:T , θ) =
T∏
t=1

p(yt|xt, θ) (1.3)

and prior distribution

p(x0:T , θ) = p(x0|θ)p(θ)
T∏
t=1

p(xt|xt−1, θ). (1.4)

The goal of inference is to obtain the joint state and parameter posterior distribution

p(x0:T , θ|y1:T ) =
p(x0:T , θ, y1:T )∫

p(x0:T , θ, y1:T )dx0:Tdθ
. (1.5)

In certain situations, the marginal likelihood

p(y1:T ) =

∫
p(x0:T , θ, y1:T )dx0:Tdθ (1.6)

is also a quantity of interest.

1.2 Example: A Simple Growth Model

The above specification captures a great many models of interest in economics. The

following is a simple growth model where labor is supplied inelastically and fixed at

unity. A representative agent seeks to maximize the expected value of lifetime utility

E0

∞∑
t=1

βtln(ct),

4
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subject to

qt = eztkαt (1.7)

qt = ct + it (1.8)

kt+1 = it + (1− δ)kt (1.9)

zt+1 = ρzt + εt, (1.10)

where qt, kt, ct, it and zt denote output, capital, consumption, investment and tech-

nology. The structural parameters are (α, β, δ, ρ, σ), which denote capital’s share

of output, discount factor, capital depreciation, persistence to technology evolution,

and volatility in technology shock εt ∼ N(0, σ2). To convert the above model into

state-space form, numerical methods would be needed to find an approximate to the

policy function for consumption in the form of c(zt, kt) as no close-form solution is

available. If we look at the full depreciation case where δ = 1, however, a close-form

solution for consumption is given by c(zt, kt) = (1 − αβ)eztkαt . Assume that we ob-

serve output and investment with measurement errors, the state-space form of the

above growth model is characterized by observation equations

qt = eztkαt + εqt (1.11)

it = αβeztkαt + εit , (1.12)

and state equations (1.6) and

kt = αβeztkαt . (1.13)

5
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2

SMC Methods for Parameter Estimation

Computing the posterior for a general HMM in close-form is only possible in but a

very limited number of cases. In most situations, one must resort to finding an ap-

proximate posterior with numerical methods. SMC methods are powerful simulation

methods designed to produce samples approximately distributed according to the

true posterior. There has been a rich development in the SMC literature in recent

years1 and several key ideas form the basis of the estimation strategies proposed in

this dissertation.

2.1 State Filtering

State filtering is the central problem of interest in the SMC literature and the subject

of the vast majority of applications for SMC methods. As such we will first consider

the standard filtering problem without parameter uncertainty in the following state-

1 See Doucet and Johansen (2008) for an excellent tutorial on particle filtering and smoothing.
See Doucet et al. (2001) for a complete reference of recent developments in SMC methods.

6
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space setup

yt+1 ∼ p(yt+1|xt+1) (2.1)

xt+1 ∼ p(xt+1|xt), (2.2)

where the unobserved Markov process {xt}t≥1 has initial distribution p(x0), and the

observations {yt}t≥1 are conditionally independent given {xt}t≥0. In state filter-

ing, one wishes to make sequential inference on the marginal filtering distribution

p(xt+1|y1:t+1). Note that we are not making inference on the joint filtering poste-

rior p(x1:t|y1:t). This is because it’s inherently impossible to obtain a reliable SMC

estimate of p(x1:t|y1:t) due to the sample impoverishment problem caused by the

resampling step in SMC methods. With only a fixed number of particles, the par-

ticle approximation of p(x1:t|y1:t) will eventually collapse to a single point for a big

enough t (a rigorous discussion on this problem can be found in Doucet and Jo-

hansen (2008)). We thus focus on the marginal filtering distribution only, which can

be consistently estimated under regularity conditions.

We would like to approximate the following filtering recursions,

p(xt+1|y1:t+1) =
p(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
(2.3)

p(xt+1|y1:t) =

∫
p(xt|y1:t)p(xt+1|xt)dxt. (2.4)

At the core of any SMC method is importance sampling, an importance function of

the following decomposable form is used to facilitate fixed-cost sequential estimation,

qt(x1:t+1) = qt(x1:t)qt+1(xt+1|x1:t) (2.5)

= q1(x1)
t+1∏
k=2

qk(xk|x1:k−1). (2.6)

This means we can obtain approximate samples from p(xt+1|y1:t+1) by sampling par-

ticles x
(i)
t+1 from qt+1(xt+1|x(i)

1:t) with unnormalized weights wt+1(x1:t+1). The weights

7
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wt+1(x1:t+1) can also be computed in the following recursive way,

wt+1(x1:t+1) = wt(x1:t)αt+1(x1:t+1) (2.7)

= w1(x1)
t+1∏
k=2

αt+1(x1:t+1), (2.8)

where the incremental weights are

αt+1(x1:t+1) =
p(yt+1|xt+1)p(xt+1|xt)

qt+1(xt+1|x1:t)
. (2.9)

Many different SMC algorithms simply differ in the way the importance function

qt+1(xt+1|x1:t) is chosen. For example, in the bootstrap state filter used in Fernández-

Villaverde and Rubio-Ramı́rez (2005) and Gallant et al. (2010), qt+1(xt+1|x1:t) =

p(xt+1|xt). In other words, the importance function is chosen to be the prior density

of the latent state. It can be shown that the variance of the importance weights w
(i)
t+1

is minimized by choosing an importance function of the form

qoptt+1(xt+1|x1:t) =
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|xt)
(2.10)

= p(xt+1|yt+1, xt), (2.11)

in which case the incremental weights αt+1(x1:t+1) would reduce to p(yt+1|xt). This

inclusion of information yt+1 in the importance function at time t + 1 is referred to

as perfect adaption in Pitt and Shephard (1999) and will yield optimal SMC per-

formance. For structural models under consideration in this dissertation, however,

qoptt+1(xt+1|x1:t) is usually not available in close-form. The auxiliary particle filter de-

veloped in Pitt and Shephard (1999) allows us to make use of information yt+1 in

a different manner and offers better performance than the simple bootstrap filter.

Auxiliary particle filtering is an example of the resample-sample class of SMC meth-

ods, which reverses the sample then resample logic in the bootstrap filter. This

simple change will result in a greater number of distinct particles representing the

8
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target distribution as resampling will cause particle degeneracy. Auxiliary particle

filtering also makes use of information at t+1 by first looking ahead to resample state

particles that will best rationalize the data at t + 1 before sampling posterior state

particles at time t + 1. The auxiliary particle filter is an example of what is known

as a resample-sample method, which is designed to alleviate particle degeneracy by

changing the order of the sampling and resampling step in a standard SMC method.

For a resample-sample method, the incremental importance weights are

αt+1(x1:t+1) =
p(yt+1|xt+1)p(xt+1|xt)

q1
t+1(xt|yt+1)q2

t+1(xt+1|x1:t)
, (2.12)

where particles are first resampled according to weights q1
t+1(xt|yt+1) and then sam-

pled from the importance function q2
t+1(xt+1|x1:t). When the optimal importance

function (2.11) is not available, local approximations are used, typically setting

q1
t+1(xt|yt+1) = p(yt+1|E(xt+1|xt)) and q2

t+1(xt+1|x1:t) = p(xt+1|xt).

2.2 Joint State Filtering and Parameter Learning

In the presence of parameter uncertainty, we are now working with the state-space

system (1.1) and (1.2) and would like to make sequential inference on p(xt+1, θ|y1:t+1).

This means we want to build an empirical measure of p(xt+1, θ|y1:t+1) with a swarm

of weighted particles,

p̂(xt+1, θ|y1:t+1) =
1

N

N∑
i=1

W i
t+1δ(xit+1,θ

i
t+1)(xt+1, θt+1), (2.13)

where

W i
t+1 =

wt+1(xit+1, θ
i
t+1)∑N

j=1wt+1(xjt+1, θ
j
t+1)

. (2.14)

Most recent developments in SMC parameter estimation make use of parameter suffi-

cient statistics for efficient computation, which would require posterior distributions

9
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of model parameters to be in analytical form. Examples of this line of work include

Storvik (2002), Fearnhead (2002) and Carvalho et al. (2010), to name a few. As

parameters in most structural models often don’t have closed-form posteriors avail-

able, a successful SMC estimation algorithm for structural models calls for a base

algorithm that doesn’t require the use of sufficient statistics.

One such method is the modified normal kernel move in Liu and West (2001)

(LW). The main strategy in this method is to evolve parameters using an artificial

law of motion as if they are additional state variables in the system and adjusting

for the loss of information incurred through kernel shrinkage locations. Specifically,

the LW method uses the following normal mixture smoothing kernel with location

shrinkage to facilitate parameter learning

p(θ|y1:t+1) ≈
N∑
i=1

w
(i)
t N(θ|aθ(i)

t + (1− a)θ̄t, (1− a2)Vt), (2.15)

where θ
(i)
t denote the posterior samples of θ a time t, Vt denote the posterior variance

of θ
(i)
t , and a = (3δ − 1)/2δ controls the degree of location shrinkage through the

discount factor δ. Empirical evidence show that setting δ to values in the range

of [0.9, 0.95] works best parameter estimation, as higher values will contribute to

particle degeneracy. The shrinkage pattern of the kernel locations, coupled with

the variance correction term 1 − a2 gives LW the ability to traverse the parameter

space using artificial evolutions without Monte Carlo variance degradation. In the

resample-sample framework, the LW algorithm is essentially an SMC filter with the

following incremental importance weights

αt+1(x1:t+1) =
p(yt+1|xt+1, θt+1)p(xt+1, θt+1|xt, θt)

q1
t+1(xt, θt|yt+1)q2

t+1(xt+1, θt+1|xt, θt, yt+1)
(2.16)

=
p(yt+1|xt+1, θt+1)

p(yt+1|g(xt),m(θt))
, (2.17)

where θt denote the time t particle estimates of the posterior p(θ|y1:t). For the

10
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resampling step, LW follows the idea in Pitt and Shephard (1999) and uses par-

ticles in period t to look ahead before sampling for period t + 1. In particular,

g(xt) = E(xt+1|xt,m(θt)) and m(θt) = aθt + (1 − a)θ̄t. Going from (2.14) to (2.15),

p(xt+1, θt+1|xt, θt) cancels with q2
t+1 as both decomposes into p(xt+1|θt, xt)p(θt+1|xt, θt),

where p(θt+1|xt, θt) is given by the LW mixture kernel (2.15).

Introduced by Gilks and Berzuini (2001), another way to explore the parameter

space in the SMC setting is through the incorporation of Markov Chain moves that

target parameter posteriors. In the state filtering literature, the use of MCMC

moves is a tested method of alleviating sample degeneracy caused by successive

resampling. With a properly designed Markov kernel, samples from an SMC method

can be “jittered” to replenish variability and thus improve the quality of the posterior

approximation. In a parameter estimation context, the key principle is to design

at time t a Markov kernel Kt(θ
′|θt) whose invariant distribution is the parameter

posterior p(θ|xt, y1:t), ∫
p(θ|xt, y1:t)Kt(θ

′|θt)dθt = p(θ′|xt, y1:t). (2.18)

Constructing such Markov kernels is straightforward as all the usual MCMC theory

applies. For example, if every element in θ = (θ1, · · · , θM) has a close-form posterior

distribution, we can use the following Markov kernel based on the Gibbs sampler,

Kt(θ
′|θt) = p(θ′1:L|x1:t, y1:t)

M∏
m=L+1

p(θ′m|θ′1:m−1, θm+1:M , x1:t, y1:t). (2.19)

In other words, we first sample θ′1:L ∼ p(θ′1:L|x1:t, y1:t), then sample θ′L+1 ∼

p(θ′L+1|θ′1:L, θL+2:M , x1:t, y1:t), then sample θ′L+2 ∼ p(θ′L+2|θ′1:L+1, θL+3:M , x1:t, y1:t) and

so on.

If p(θ′m|θ′1:m−1, θm+1:M , x1:t, y1:t) is not available in close-form, one can sample from

a properly tuned Metropolis-Hastings kernel q(θ′m|θ′1:m−1, θm+1:M , x1:t, y1:t) instead,

11
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and accept θ′m with the Metropolis-Hastings acceptance probability

min

(
1,

p(θ′|y1:t, x1:t)

p(θt−1|y1:t, x1:t)

q(θt−1|θ′, y1:t, x1:t)

q(θ′|θt−1, y1:t, x1:t)

)
(2.20)

= min

(
1,

p(yt|xt, θ′)p(xt|xt−1, θ
′)

p(yt|xt, θt−1)p(xt|xt−1, θt−1)

q(θt−1|θ′, y1:t, x1:t)

q(θ′|θt−1, y1:t, x1:t)
.

)
(2.21)

2.3 Use of Sufficient Statistics

Parameter learning filters such as Liu and West (2001) have known sample degener-

acy issues, the complexity of most structural models can only exacerbate this problem

as the importance densities may be very different from the posterior distributions.

This will lead to the importance weights in (2.17) having high variance, and thus

the resulting particle approximation of the parameter posteriors will be unreliable.

One strategy to remedy this problem is to use conditional sufficient statistics to cre-

ate what are called Rao-Blackwellized filters, which can reduce the variance in the

importance weights, thereby providing more efficient particle approximation of the

target densities. Storvik (2002), Fearnhead (2002) and Carvalho et al. (2010) are

some recent examples of SMC parameter estimation strategies built entirely around

the efficient use of parameter sufficient statistics. Supplementing general parame-

ter space traversal mechanisms such as the normal mixture shrinkage kernel in LW

with conditional sufficient statistics will be the central parameter estimation strategy

explored in this dissertation.

Let the set of model parameters be grouped into θ = (φ, ϕ), where ϕ collects

those parameters with conditional sufficient statistics and φ contains those without.

Then for ϕ, we have

p(ϕ|xt, yt) = p(ϕ|st), (2.22)

where st = S(st−1, xt, yt) is a recursively defined lower dimensional sufficient statis-

tics. Sampling new particles for ϕ reduces to sampling from their exact posterior

12
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Table 2.1: Simple growth model: calibrated parameter values for simulated data and
the choice of prior p(θ) for SMC estimation.

θ calibration p(θ)
α 0.33 Uniform(0,1)
β 0.96 Uniform(0.75,1)
ρ 0.8 Uniform(0,1)
σ 0.05 Uniform(0,0.1)
σq 0.014 Uniform(0,0.1)
σi 0.02 Uniform(0,0.1)

distributions. Even in situations where complete Blackwellisation is not possible,

the ability to sample from p(ϕ|st) can enhance the overall estimation quality of θ by

rejuvenating θ particles lost due to resampling. As a quick demonstration, I estimate

the simple growth model in section 1.2 with 200 simulated observations (see Table

2.1 for calibration used). The parameters to be estimated are θ = (α, β, ρ, σ, σq, σi),

where σq and σi are the volatilities in the normal observational errors in equations

(1.11) and (1.12), respectively. The model is estimated using both the exact algo-

rithm proposed in Liu and West (2001) and a hybrid algorithm that uses the LW

kernel on parameters (α, β, σq, σi) and draws from exact posteriors based on suffi-

cient statistics for parameters (ρ, σ). Figures 2.1 and 2.2 show that despite having

the same prior p(θ), the two algorithms performed quite differently. Note that while

the two algorithms both tracked ρ and σ to their true values, the LW algorithm

appears to have difficulties learning about the other parameters, in particular the

nonlinear α and β. The hybrid algorithm, on the other hand, does markedly better

than LW on all parameters despite only taking advantage of the conditional sufficient

statistics structure on ρ and σ.

13
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Figure 2.1: SMC estimation using LW supplemented with sufficient statistics on
(ρ, σ). The calibrated parameter values are marked by the horizontal line. The red,
green and blue lines are the estimated 2.5%, 50% and 97.5% posterior quantiles.

2.4 Theoretical Survey

Before proceeding to develop SMC methods for structural estimation, it’s neces-

sary to conduct a survey on the current state of theoretical development in the

SMC literature. Generally speaking, the current SMC theoretical development is

slightly lagged behind the empirical literature. The majority of the available SMC

convergence theories apply to simpler settings, such as pure state filtering, or fixed

parameter estimation with no latent state variables involved. A formal convergence

study for the estimation problem in this dissertation would involve fixed parameters

in a hidden Markov model without close-form state-space representations, which is

very difficult if at all feasible. Nevertheless, a number of those theory papers not only
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Figure 2.2: SMC estimation using LW only. The calibrated parameter values are
marked by the horizontal line. The red, green and blue lines are the estimated 2.5%,
50% and 97.5% posterior quantiles.

provide starting points for a formal theoretical study of structural estimation using

SMC methods, but also shed light on the possible regularity conditions under which

they work as well as any performance limitations of this estimation framework. It’s

also worth mentioning that even though the current MCMC-based structural estima-

tion methodology such as that employed in Fernández-Villaverde and Rubio-Ramı́rez

(2005) and Gallant et al. (2010) incorporates particle filters for likelihood evaluation,

parameter space traversal is still carried out with MCMC traversal mechanisms. The

particle filters in those methods are essentially used as numerical integrators to in-

tegrate the latent state variables out of the likelihood function. As such, MCMC

convergence theory still applies to those methods in terms of parameter estimation.

One might be interested, however, to apply available SMC convergence theories to

15



www.manaraa.com

investigate the convergence properties of the approximated likelihood functions in

the aforementioned MCMC structural estimation framework. This is a related but

different issue already visited by Fernández-Villaverde et al. (2006) and Ackerberg

et al. (2009).

In the current probability literature, a number of papers have established central

limit theorems for standard SMC methods (i.e., sequential importance sampling with

a resampling scheme) under different conditions. As any SMC method will suffer

from severe particle degeneracy problems for a fixed number of particles and a large

enough T , the standard mode of analysis in developing those CLTs is to fix T and

investigate the limiting properties of the empirical measure of the target densities

as the particle size goes to infinity. To cite a few notable ones, Chopin (2004)

developed a CLT for particle filters under minimal assumptions (target particles

must satisfy some finite variance condition in the Euclidean norm). Based on this

CLT, a theoretical framework is then provided to study the rate of divergence of

asymptotic variances of different particle filtering methods. The filtering scenarios

examined in the paper, however, does not include HMMs with fixed parameters due

to model complexity. Künsch (2005) developed a CLT in the L1-norm, assuming

only that the state transition equation is continuous and the observation equation is

positive and upper bounded. This paper also established the conditions under which

uniform convergence of the particle filter could be achieved at all t. The results in this

paper, however, only apply to the pure state filtering problem. Gilks and Berzuini

(2001) established a CLT for their resample-move algorithm, which was originally

designed to perform fixed parameter estimation with no latent state variables. In

addition, Shiga and Tanaka (1985) and Moral and Guionnet (1999) both developed

CLTs using interacting particle theory.

Due to the complexity of the structural models considered, it is rather difficult

to check the conditions required to quote the CLTs cited in the last paragraph for
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structural estimation. Crisan and Doucet (2002), on the other hand, has established

several convergence results in the weak topology without developing a CLT, and could

potentially be applied to the methods developed in this dissertation. Theorem 1 from

Crisan and Doucet (2002) establishes almost sure convergence, requiring only that the

state transition kernel be Feller and the likelihood function be bounded, continuous

and strictly positive. If we treat fixed parameters as another state variable, then the

mixture kernel in Liu and West (2001) and the random-walk Metropolis kernel in a

Markov-move method could be both seen as the transition kernels for θ. Both clearly

satisfy the Feller property, which essentially states that the result of applying the

transition kernel to a bounded continuous function is again a bounded continuous

function. The second condition for achieving almost sure convergence is satisfied by

the DSGE likelihoods considered in chapter 3, although not by the game model in

chapter 4 as the dynamic game likelihood is not continuous. Theorem 2 of Crisan

and Doucet (2002) establishes convergence in the mean square sense, requiring only

the importance weights be upper bounded and a standard resampling scheme. Since

all the methods developed in later chapters use the standard multinomial resampling

scheme, and the importance weights appear to be well behaved empirically, this

theorem could potentially apply to structural estimation as well. Another useful

albeit negative result from Crisan and Doucet (2002) is that uniform convergence is

not possible when fixed parameters are involved as the model is not ergodic anymore.

Reassuringly, one of the conditions for uniform convergence in the L1-norm in Künsch

(2005) is that the state transition densities be the same for all t, this is clearly violated

by DSGE models since the computed law of motion is dependent on the parameter

proposal at each t.
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3

SMC Estimation of DSGE Models

The formal estimation of dynamic stochastic general equilibrium (DSGE) models

has generated a steady stream of literature over recent years. Proposed estimation

methods have evolved from earlier ad hoc techniques to the latest Bayesian simula-

tion based methods utilizing Markov chain Monte Carlo algorithms (see Fernández-

Villaverde (2009) for an in-depth review on this subject). We would like to push the

frontier of this line of research by presenting a full SMC approach to the estimation

of dynamic equilibrium models.

DSGE models are characterized by a likelihood function for the observables,

which in turn is driven by a set of structural parameters representing preferences

and technology in the modeled economy. It is therefore natural to think about a

likelihood-based estimation technique for these models. The challenge however, is

that the likelihood of a DSGE model is hard to evaluate. The likelihood function

is usually a high dimensional object that exhibits nonlinearity in both parameters

and state variables and often also features non-normal shocks. As such most DSGE

models of interest do not have closed-form solutions, thus depriving the researcher

of an analytical form for the likelihood function. Finding better solution methods
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for DSGE models has always been an actively pursued area of research, although

this will not be the focus of our paper. For our purposes, there already exist several

classes of numerical solution methods well documented by Aruoba et al. (2006) that

we could use straight off the shelves.

With a proper solution method, one can find the approximated policy functions of

the DSGE model of interest and construct a likelihood function from the state space

representation of the model. The standard thing to do is to solve the linearized model

with normal shocks, and then evaluate the resulting likelihood using the Kalman

filter. Fernández-Villaverde and Rubio-Ramı́rez (2005) (henceforth FVRR) showed

that better model fit could be achieved by using a sequential Monte Carlo filter to

evaluate the likelihood, as the SMC filter allows the likelihood to be constructed

from a nonlinear and non-normal state space representation. The latest Bayesian

estimation technique for DSGE models is thus to embed a nonlinear state filter

inside an MCMC routine such as a Metropolis-Hastings kernel, the outer MCMC

loop will explore the parameter space while the embedded state filter constructs the

likelihood function with the latent state variables integrated out.

The latest development in the SMC literature demonstrated that SMC filters

could not only be used for state-filtering, but parameter learning as well. The idea of

using SMC methods to estimate parameters is not new, Liu and West (2001), Storvik

(2002), Fearnhead (2002) and Fearnhead and Clifford (2003) have shown the concept

to be viable, while Gilks and Berzuini (2001), Carvalho et al. (2010) and Johannes

and Polson (2008) have proposed several practical SMC-based estimation methods.

Combining several ideas from those papers, we present an SMC estimation method

for joint state and parameter learning on DSGE models.

So why use SMC when MCMC is proven to work? First of all, MCMC meth-

ods rely on Markov chain convergence, which might not be geometrically ergodic for

structural models such as DSGE models (see Papaspiliopoulos and Roberts (2008)).
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Chib and Srikanth (2010) proposed an MCMC method that features random pa-

rameter clustering and tailored proposal distributions which aims to address exactly

the problem of slow mixing when performing MCMC on complex models with high

dimensional parameter spaces. While their method appears to be a decent remedy

to slow MCMC convergence with DSGE models, it’s still an MCMC method, and

thus doesn’t offer the benefits inherent to SMC methods. Second, by nature of SMC

methods, we can obtain posterior approximations of the parameters and states at

each time period, which allows us to perform on-line estimation. To obtain the same

amount of information with MCMC, one would have to resort to repeated implemen-

tation of MCMC at each time period, which is more inefficient in terms of running

time and computing resources. Perhaps the biggest advantage of being able to per-

form on-line estimation is that it allows us to compute the marginal likelihoods of

the model at each time point very easily, thus making it possible to perform model

comparison sequentially. Giacomini and Rossi (2007) showed that the performance of

the models might be time varying in an environment characterized by instability and

model misspecification. A dynamic comparison between different models could be

useful in choosing sequentially through time the best model and provide important

information about the data generating process. Finally, parallelization is straight-

forward when implementing SMC methods in contrast to MCMC based methods.

As the estimation of DSGE models involves computationally intensive numerical

methods to solve the model, this is helpful in that it allows practitioners to combine

posterior particles from different computers to form a more accurate approximation

of the parameter posteriors.

The goal of this chapter is to introduce SMC based methods to the empirical

macroeconomics literature as a viable alternative to MCMC estimation. We provide

two examples to this end, we first compute and estimate the benchmark dynamic

equilibrium economy, the stochastic neoclassical growth model. After we solve the
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model with a second order approximation of the policy functions, we estimate it using

both the filter-embedded MCMC approach from Fernández-Villaverde and Rubio-

Ramı́rez (2005) and a full SMC approach utilizing parameter sufficient statistics. In

this example, we show that an SMC estimation method could provide comparable

DSGE estimation results to MCMC methods. We then apply SMC estimation to a

large scale DSGE model built for the Euro area by Smets and Wouters (2003). We

show that the marginal likelihoods for any sequentially estimated model could be

obtained at each period as a by-product of the SMC estimation procedure, which

allows us to compute Bayes factors between the estimated DSGE model and various

reduced-form models in an on-line fashion. This could be a useful tool in the on-

going investigation of whether to use deep structural models based on economic

theory such as the DSGE or pure statistical models such as vector autoregressions

(VAR) or Bayesian vector autoregressions (BVAR).

3.1 Two Bayesian Estimation Methods

The main problem related to estimating DSGE models is the evaluation of the like-

lihood. With the advent of SMC methods we can now deal with nonlinear and

non-normal dynamic general equilibrium models. In particular FVRR used a com-

bination of Sequential Monte Carlo and Markov Chain Monte Carlo where the SMC

filter is used to integrate out model states for evaluation of the likelihood function.

We eliminate the MCMC step using a full SMC approach to perform simultaneous

estimation of time-varying state vectors and fixed parameters. The main advantage

of our method is the access to model marginal likelihood and posterior distributions

over real time. In this section we first describe both the SMC filter within MCMC

approach and the full SMC approach, we then estimate the stochastic neoclassical

growth model with both approaches.
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3.1.1 MCMC with Embedded State Filter

An MCMC-based estimation requires the evaluation of the model likelihood

p(y1:T |θ) =
T∏
t=1

p(yt|y1:t−1, θ). (3.1)

A DSGE model has a likelihood that’s nonlinear in terms of state variables and fixed

parameters, thus two types of likelihood evaluation methods are used for MCMC

based estimation methods. One could either linearize the state and observation

equations and use the Kalman filter or use a bootstrap filter to get a particle approx-

imation of the likelihood without imposing any linearity assumption on the model.

FVRR compared both methods of likelihood evaluation and concluded that an SMC

likelihood evaluation is superior to a Kalman filter evaluation in the sense of better

model fit. The general idea of the procedure is to use a particle filter to evaluate the

likelihood function of the model for each MCMC draw of θ, thereby obtaining the

following particle approximation of the likelihood,

p(y1:T |θ) ≈ pN(y1:T |θ) =
T∏
t=1

1

N

N∑
i=1

p(yt|y1:t−1, x
(i)
t , θ)δx(i)t

(xt), (3.2)

where N denotes the number of particles used and δx0(x) is the Dirac delta mass

centered at x0. At each time step, the conditional model likelihood

p(yt|y1:t−1, θ) =

∫
p(xt−1|y1:t−1, θ)p(xt|xt−1, θ)p(yt|xt, θ)dxt−1:t (3.3)

is approximated by 1
N

∑N
i=1 p(yt|y1:t−1, x

(i)
t , θ)δx(i)t

(xt).

This particle approximation of the model likelihood is then used in a Metropolis-

Hasting kernel to search the parameter space (after specifying some priors on the

parameters). Note that the use of SMC in this case is of state filtering only since

θ is considered a fixed value inside the bootstrap filter. The particle filter is essen-

tially used to average the conditional model likelihood over the simulated state paths
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{xi0:T}Ni=1. A slightly modified bootstrap filter from Doucet et al. (2001) could fullfill

the purpose of likelihood evaluation and is given as follows:

1. Initialization: For i = 1, · · · , N , sample x
(i)
0 ∼ p(x0|θ) and set t = 1.

2. Importance Sampling: For i = 1, · · · , N , sample x̃
(i)
t ∼ p(xt|x(i)

t−1, θ), with

importance weights proportional to w̃
(i)
t ∝ p(yt|x̃(i)

t , θ).

3. Resampling: Resample with replacement N particles (x
(i)
t ; i = 1, · · · , N) from

the set (x̃
(i)
t ; i = 1, · · · , N) according to the importance weights earlier. If

t 6= T , set t← t+ 1 and go to step 2.

Note that the above algorithm does not store the particle paths x
(i)
0:t since we are not

doing inference on p(x0:t|y1:t, θ), and all we’re interested in is using the importance

weights w̃
(i)
t to get a particle approximation of the model likelihood p(y1:T |θ). An-

other point worth mentioning is that even though we are not using the particle filter

for its original purpose of finding the joint or marginal distribution of the states,

the resampling step is still needed to maintain algorithm stability over time. With-

out resampling, the variance of the importance weights will increase exponentially

over time, thus leading to unstable likelihood computation. Doucet and Johansen

(2008) provide an excellent tutorial on particle filters that demonstrates in detail the

necessity of the resampling step in any SMC method.

3.1.2 SMC Joint State and Parameter Learning

SMC methods are commonly used in the analysis of time-series data where observa-

tion and hidden Markov state evolution form a coupled dynamic process. The major

statistical challenge in SMC is the estimation of fixed parameters. In order to facil-

itate correct traversal of the parameter space, it is necessary to introduce artificial

particle dynamics. One of the methods that have been successfully applied in the
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literature is the modified normal kernel move of Liu and West (2001) (henceforth

LW). The main feature of LW is the use of a normal mixture smoothing kernel with

location shrinkage to compensate for the loss of information in artificial parameter

evolution. LW also uses the auxiliary particle filter developed by Pitt and Shephard

(1999), which essentially does a one-step look ahead before sampling new particles

so that only particles more likely to be consistent with the new arriving observation

evolve to become new particles for the next time step. Another SMC method vi-

able for DSGE estimation is the resample-move algorithm from Gilks and Berzuini

(2001) (henceforth GB). Their algorithm combines MCMC moves with importance

sampling/resampling and has a computational advantage over LW when applied to

DSGE estimation. We chose LW and GB as the base algorithms for DSGE estima-

tion despite numerous recent developments such as Storvik (2002), Fearnhead (2002),

Polson et al. (2008) and Carvalho et al. (2010) for the main reason that a general

algorithm that doesn’t rely on exact parameter posteriors is needed for DSGE esti-

mation. We do, however, use a couple of key ideas from those papers in combination

with LW to achieve successful SMC estimation of DSGE models.

DSGE models are complex structural models where many model parameters enter

the observation equations in a nonlinear fashion. In addition, there is no analytical

form for the state evolution equations in all but the simplest DSGE models. Typ-

ically, one has to solve a system of stochastic partial differential equations defined

by the model with numerical methods to obtain tractable state evolution equations,

conditional on the model parameters. In this sense, model parameters set the ’struc-

ture’ of the state-space form of the model, thus the name ’structural parameters’.

With the exception of LW and GB, all of the remaining papers mentioned earlier

have made the assumption that the model parameters have conditional sufficient

statistics available given the state trajectories and data in order to exploit the bene-

fits of incorporating sufficient statistics into their SMC methods. Due to the complex
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nature of DSGE models, many parameters simply don’t have a conditional sufficient

statistics structure to exploit, thus preventing us from using those methods relying

solely on parameter sufficient statistics. GB makes no explicit assumption about

model parameters having sufficient statistics, and samples parameter particles from

a Markov chain transition kernel. The disadvantage of their approach is that it suf-

fers from the curse of dimensionality, as demonstrated in Bengtsson et al. (2007).

We are, however, only interested in estimating a fixed set of parameters that does

not grow in size and this is therefore not an issue for us. Polson et al. (2008) pro-

posed a general algorithm that approximates the joint posterior of the states and

the parameters by a mixture of fixed lag smoothing distributions. Without sufficient

statistics, this approach requires the full history (x0:t, y1:t) for inference at time t.

Therefore, it also suffers from increasing computation cost over time in the absence

of sufficient statistics. The particle learning algorithm proposed in Carvalho et al.

(2010) is similiar to GB in spirit but requires conditional sufficient statistics to move

particles using Gibbs sampling. LW and GB thus emerge as the only sequential

learning methods that could be applied to a general state-space model and at the

same time only requiring state and parameter particles from the last time step to

make inference in the current time step.

Algorithm 1: LW with Sufficient Statistics

Extending the key idea in West (1993a) and West (1993b) of using mixtures to

approximate posterior distributions, LW uses the following smooth kernel density to

approximate p(θ|y1:T ) given weighted particles {θ(i)
t }Ni=1 with weights {w(i)

t }Ni=1

p(θ|y1:T ) ≈
N∑
i=1

w
(i)
t N(θ|m(i)

t , h
2Vt) (3.4)

where h > 0 is a smoothing parameter to be set by the user and Vt is the Monte

Carlo posterior variance. West (1993a) specifies the shrinkage rule for the kernel
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locations to be

m
(i)
t = aθ

(i)
t + (1− a)θ̄t (3.5)

where a =
√

1− h2. We incorporate sufficient statistics whenever possible as nu-

merous papers cited earlier have shown this to be a proven mechanism of alleviating

particle degeneracy. Let θ = (φ, ϕ) where φ and ϕ denote the subsets of parame-

ters without and with sufficient statistics conditional on the states, respectively. For

those model parameters with sufficient statistics, particle evolution boils down to

sampling from their exact posterior distributions p(ϕ|st), where st = S(st−1, xt, yt)

is a recursively defined sufficient statistics. Another way to help improve particle

variability is to use a more efficient resampling scheme. Variability of particles can

be assessed by a quantity known as the effective sample size (ESS), ESS at time t is

defined as

ESS(t) =

(
N∑
i=1

(w
(i)
t )2

)−1

. (3.6)

Inference based on N weighted particles is equivalent to inference based on ESS

particles from the exact target distribution. One could choose to only resample when

the ESS falls below a certain threshold, which is typically set at N/2. In addition

to using the adaptive resampling approach just mentioned, one could also entertain

different resampling methods. Douc et al. (2005) provides a comparative study on

some of the most popular resampling schemes. We use the multinomial resampling

scheme for our SMC implementation. Group the model parameters into θ = (φ, ϕ),

where φ and ϕ denote the subsets of parameters without and with sufficient statistics

conditional on the states, respectively. We propose the following algorithm for DSGE

estimation:

1. Initialization: For i = 1, · · · , N , sample initial particles (φ, ϕ)(i) ∼ p(θ), x
(i)
0 ∼

p(x0|θ), set t = 0.
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2. One step prediction: For i = 1, · · · , N , compute look-ahead particles (µ
(i)
t+1,m

(i)
t )

for (x
(i)
t+1, φ

(i)
t ) by µ

(i)
t+1 = E(xt+1|x(i)

t , φ
(i)
t, ϕ

(i)
t ) and m

(i)
t = aφ

(i)
t +(1−a)φ̄t, where

φ̄t is the mean of particles {φ(i)
t }Ni=1.

3. Auxiliary resampling: Sample auxiliary index set k1:N ∼Multinomial(N, g1:N
t+1)

where g
(i)
t+1 ∝ w

(i)
t p(yt+1|µ(i)

t+1,m
(i)
t , ϕ

(i)
t ). Use adaptive resampling if necessary

when resampling state and parameter particles later.

4. Sample φ: For i = 1, · · · , N , sample φ
(k)
t+1 ∼ N(·|m(k)

t , h2Vt), where m
(k)
t is the

kth component of the smooth kernel density in (3.4) and Vt is the Monte Carlo

variance of particles {φ(i)
t }Ni=1.

5. Evolve states: For i = 1, · · · , N , sample x
(k)
t+1 ∼ p

φ
(k)
t+1

(xt+1|x(k)
t , φ

(k)
t+1, ϕ

(k)
t ).

6. Sample ϕ: For i = 1, · · · , N , update the sufficient statistics particles by s
(k)
t+1 =

S(s
(k)
t , x

(k)
t+1, yt+1), and then sample ϕ

(k)
t+1 ∼ p(·|s(k)

t+1).

7. Update importance weights : The new posterior weights are given by w
(k)
t+1 ∝

p(yt+1|x(k)
t+1, φ

(k)
t+1, ϕ

(k)
t+1)/g

(k)
t+1.

8. If t 6= T , set t← t+ 1 and go to step 2.

When applied to the estimation of a DSGE model, the model typically have to be

solved at the end of step 4 to get the new state evolution equations based on the newly

sampled parameter particles. This is reflected by the notation in step 5 of the above

algorithm where the state propagation density is dependent on φ
(k)
t+1. If one wishes

to incorporate sufficient statistics, then ideally the model should be solved again at

the end of step 6 to reflect the update of those parameters with sufficient statistics.

We omit this step when we estimate the neoclassical growth model as solving a

DSGE model is computationally expensive and we found no significant empirical
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improvement in the estimation results to justify the increase in computation time.

Note that this could change depending on the model so we recommend users to try

both and weigh the trade-offs between run time and quality of estimation. If applied

to the DSGE model for the Euro area in Smets and Wouters (2003) (henceforth SW),

the LW algorithm requires the model to be solved at least twice per particle at each

time period, once at the end of step 2 and once at the end of step 4. The reason

is that for the SW DSGE model, not only do the state equations depend on the

structural parameters, but some of the observation equations do as well. Therefore

before building the weights g
(i)
t+1 in step 3, the observation equations must be re-

solved to reflect the newly sampled m
(i)
t particles. Since solving the model is the

computational bottleneck in DSGE estimation, we turn to the SMC method from

Gilks and Berzuini (2001) (henceforth GB) to estimate the SW model.

Algorithm 2: GB with Sufficient Statistics

Incorporating Markov chain moves into a SMC method is by now a fairly established

method of dealing with the issue of particle degeneracy. The basic idea in Gilks and

Berzuini (2001) is in some way a generalization of the particle learning algorithm pro-

posed in Carvalho et al. (2010). To see this, set the sequence of target distributions

in GB to p(xt, θ|y1:t), then the GB resample weight at time t+ 1 becomes

w
(i)
t+1 =

p(x
(i)
t , θ

(i)
t |y1:t+1)

p(x
(i)
t , θ

(i)
t |y1:t)

∝ p(y1:t+1|x(i)
t , θ

(i)
t )p(x

(i)
t , θ

(i)
t |y1:t)

p(x
(i)
t , θ

(i)
t |y1:t)

(3.7)

∝ p(y1:t+1|x(i)
t , θ

(i)
t ), (3.8)

which is exactly the resampling weight in Carvalho et al. (2010). Incorporating

the use of sufficient statistics in GB then simply means using a mix of Gibbs and

Metropolis Hastings moves to evolve the particles. We modify the original GB al-

gorithm slightly to accommodate the use of sufficient statistics, and propose the

following algorithm:
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1. Initialization: For i = 1, · · · , N , sample initial particles (φ, ϕ)(i) ∼ p(θ), x
(i)
0 ∼

p(x0|θ), set t = 0.

2. Importance Sampling: For i = 1, · · · , N , sample x̃
(i)
t+1 ∼ p(xt+1|x(i)

t , φ
(i)
t , ϕ

(i)
t ),

then compute w
(i)
t+1 ∝ p(yt+1|x̃(i)

t+1, φ
(i)
t , ϕ

(i)
t ) and sample index set

k1:N ∼Multinomial(N,w1:N
t+1).

3. Sample φ: For i = 1, · · · , N , sample φ
(k)
t+1 ∼ qt(φ

(k)
t ).

4. Evolve states: For i = 1, · · · , N , sample x
(k)
t+1 ∼ p

φ
(k)
t+1

(xt+1|x(k)
t , φ

(k)
t+1, ϕ

(k)
t ).

5. MH accept/reject: Accept the particle set (φ
(k)
t+1, x

(k)
t+1) with the usual MH im-

portance ratio.

6. Sample ϕ: For i = 1, · · · , N , update the sufficient statistics particles by s
(k)
t+1 =

S(s
(k)
t , x

(k)
t+1, yt+1), and then sample ϕ

(k)
t+1 ∼ p(·|s(k)

t+1).

7. If t 6= T , set t← t+ 1 and go to step 2.

With the above algorithm, any DSGE model is usually solved at the end of step

3 to obtain new state evolution conditional on newly sampled parameter particles.

In the presence of sufficient statistics, the model should ideally be solved again at

the end of step 6 just as in the LW algorithm earlier. According to GB, the kernel

qt in step 3 has to be neither irreducible or reversible, so a wide range of Markov

kernels are possible. We use a properly tuned random walk Metropolis kernel here

to sample general model parameters. To reflect the conditional dependence between

model parameter and states, we perform the accept/reject step after we evolve the

current states based on the newly sampled parameters. If the particle set (φ
(k)
t+1, x

(k)
t+1)

is rejected in step 5, we replace it with the particle set (φ
(k)
t , x̃

(k)
t+1). Note that with

this algorithm, we need only solve the DSGE model once per particle at time since
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we only need to compute one set of weights. This would translate to a significantly

shorter run time compared to LW when estimating the DSGE model for the Euro

area.

3.2 Estimation of a Neoclassical Growth Model

We test the above modified LW algorithm on a stochastic neoclassical growth model

without leisure. Adding leisure to the model would only add the intratemporal

first order condition to the list of equilibrium conditions in solving the model and

would not otherwise change the estimation algorithm. The neoclassical growth model

consists of the following relationships: a single good in the economy is produced

according to the production function qt = eztkαt , where qt is output, kt is aggregate

capital and zt is a stochastic process modeling technological process. The law of

motion for capital is kt+1 = (1 − δ)kt + it, where δ is the depreciation rate and it

is the investment at time t. There is a representative agent in the economy, who

decides how much to consume in order to maximize his expected utility function:

E0

∞∑
t=1

βt
c1−τ
t

1− τ
(3.9)

where β is the discount factor, E0 is the conditional expectation operator. Let

us assume that technology evolves according to a stationary AR(1) process, i.e.

zt+1 = ρzt + εt where εt ∼ N(0, σ2) and |ρ| < 1 . We are interested in making

inference on θ = (α, β, δ, ρ, σ, τ), the six structural parameters involved in the model.

In order to do that we have to first solve the maximization problem that is fully

characterized by the following equilibrium conditions:

c−τt = βE0c
−τ
t+1[αezt+1kα−1

t+1 + 1− δ], (3.10)

ct + kt+1 = qt + kt(1− δ), (3.11)

zt = ρzt−1 + εt. (3.12)
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The first equation is the intertemporal Euler condition relating current and future

marginal utility of consumption. The second equation is the resource constraint of the

economy and the third equation is the law of motion for technology. Solving for the

equilibrium of the above model means finding the policy functions for consumption

c(·, ·) and next period’s capital k′(·, ·) which gives the optimal solution to the above

utility maximization problem as functions of the state variables, namely capital and

technology.

The above system of equations does not have a closed form solution, thus must

be solved with numerical methods. Aruoba et al. (2006) gave a nice comparison

of solution methods for dynamic equilibrium models. For our estimation purpose,

we use a second order perturbation method since it offers a nice balance between

accuracy, speed and ease of programming. Pioneered by Hall (1971) and Magill

(1977) and extended by Judd and Guu (1993) and Gasper and Judd (1997), this class

of solution methods build a Taylor series expansion of the policy functions around

the steady state of the economy and a perturbation parameter. We follow Judd and

Guu (2001) and use the standard deviation of the normal shock to technology as

the perturbation parameter. The following equations are the resulting second order

approximation of the policy functions around the non-stochastic steady state (See

Schmitt-Groh and Uribe (2004) for more details):

ĉt = α1k̂t + α2zt + α3k̂
2
t + α4z

2
t + α5k̂tzt + α6σ

2, (3.13)

k̂t+1 = β1k̂t + β2zt + β3k̂
2
t + β4z

2
t + β5k̂tzt + β6σ

2, (3.14)

where theˆabove a variable denotes its log deviation from the steady state. To find

the α and β coefficients in the above second order approximation, we plug the policy

functions (3.13) and (3.14) into the equilibrium conditions (3.10)-(3.12) and take

successive derivatives with respect to k, z and σ and set those derivatives to zero.

This generates a system of equations on the unknown coefficients, which is trivial to
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solve.

It is important to note that the state space representation of the model depends

crucially on the solution method. In particular if we use a second order approximation

of the policy functions, then (3.12) and (3.14) are the transition equations of the state

variables and the measurement equations are given by

qt = eztkαt + εq (3.15)

it = kt+1 − kt(1− δ) + εi, (3.16)

where εq ∼ N(0, σ2
q ) and εi ∼ N(0, σ2

i ).

Once the equilibrium model is solved and we obtain the above state-space repre-

sentation, the SMC estimation algorithm could be applied. We note that technology

follows a stationary AR(1) process and thus the structural parameters (ρ, σ) have a

readily available conditional sufficient statistics structure to exploit. More specifi-

cally, we have

p(ρ|x1:t, y1:t, σ) ∼ N(bt, σB
−1
t ) (3.17)

p((σ2)−1|x1:t, y1:t) ∼ Ga((t− 2)/2, Rt(b)/2), (3.18)

where bt = B−1
t

∑t
k=2 zkzk−1, Bt =

∑t
k=2 z

2
k−1, and Rt(b) =

∑t
k=2(zk − btzk−1)2.

The proposed SMC algorithms thus apply to the neoclassical growth model with

xt = (kt, zt), yt = (qt, it), φ = (α, β, δ, τ, σy, σi), ϕ = (ρ, σ) and st = (bt,Bt, Rt).

Estimation Results

We simulated 80 observations of investment and output from the model with the

calibration in table 3.1. This calibration mimics that from FVRR and reflects em-

pirical findings on real economies. We estimate this artificial data set with both

the MCMC with embedded state filter approach and the full SMC approach. For

the MCMC estimation, we ran a Metropolis Hastings algorithm for 20,000 iterations
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Table 3.1: Neoclassical growth model: calibrated parameter values for simulated
data and the choice of prior p(θ) for SMC and MCMC estimation.

θ calibration p(θ)
α 0.4 Uniform(0,0.5)
β 0.9896 Uniform(0.75,1)
δ 0.02 Uniform(0,0.05)
ρ 0.95 Uniform(0.5,1)
σ 0.007 Uniform(0,0.1)
σq 0.2 Uniform(0,0.25)
σi 0.2 Uniform(0,0.25)
τ 2 Uniform(0,5)

with a burn-in of 1000 considering the prior specification showed by table 3.1. The

same prior information is used in SMC estimation.

The likelihood function is evaluated with a particle filter with a population of

5000 particles and is then used in a Metropolis-Hastings algorithm to sample from

the parameter space. To get a sense of how the model likelihood behaves for a typical

DSGE model, we plot in figure 3.1 the likelihood profiles of various parameters. The

dotted line is the likelihood function and the solid line is the true value. As we

can see the likelihood is well behaved for for all parameters except for σq and σi.

Figure 3.2 and 3.3 show the estimated posteriors using both estimation methods.

The vertical red lines denote the artificial parameter values we simulate from.

Discussion

The SMC results might look a bit misleading in that some of the posterior modes

deviate far from the simulated parameter value, but a close inspection of the x-axes

scale on figures 3.2 and 3.3 will reveal that this is not the case. SMC seems to be

able to pick up all the parameter locations whereas MCMC does comparably with

all parameters except for the two measurement errors. SMC estimation appears to

have a wider confidence interval on some of the parameters as evident in figure 3.4,
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Figure 3.1: Profile likelihoods of the neoclassical growth model. The vertical red
lines mark the parameter calibration used for data simulation.

this is because the number of particles we used to make posterior inference is one

quarter of the MCMC samples used. To run the SMC estimation with the same

number of particles as MCMC samples would translate to a much longer run time as

the amount of computation would be equivalent to running a rolling window MCMC.

One could, however, utilize parallel computing while using SMC methods to improve

the quality of posterior inference.

To investigate the stability of the proposed SMC algorithm for DSGE estimation,

the estimation is repeated over the same data set using different random seeds. To

speed up this study, a linear approximation to the policy function is used instead

of the second-order approximation, meaning all the second-order terms involving k̂t

and zt in (3.13) and (3.14) are now dropped from the policy function approximation.
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Figure 3.2: Posterior histograms from MCMC estimation using random-walk
Metropolis-Hastings kernel. MCMC sample size is 20,000 with 1,000 burn-in. The
vertical red lines mark the parameter calibration used for data simulation.

The estimation quality will suffer as a result, but will not alter our interpretation of

the stability of the proposed SMC algorithm. The estimation is repeated five times,

each using a different seed. From figures 3.6 and 3.7, we can see that parameter

estimates for σ, β, and σi are fairly stable across different seeds. On the other

hand, Parameters such as δ, ρ and τ appear to be very sensitive to initial seeds.

These results suggest that SMC algorithms could suffer from instability for certain

nonlinear parameters in the model. On the other hand, these results were all from

estimation runs using 5000 particles, which is a fairly small number of posterior

samples. More in-depth stability studies, using more particles, and across data sets

of varying lengths should be looked into before final conclusions can be drawn on the

stability of SMC estimation of DSGE models.
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Figure 3.3: Posterior histograms from SMC estimation at the last data point. SMC
sample size is 5,000. The vertical red lines mark the parameter calibration used for
data simulation.

This example shows that we could obtain comparable estimation results using

SMC and MCMC methods. However, SMC estimation of DSGE models offers many

benefits. Figure 3.4 shows how the particle approximation of the posteriors for pa-

rameters β, α and ρ change over time. Having access to posteriors at each data point

allows one to understand the extent particular observations influence parameter in-

ference. To obtain the same amount of information with MCMC would be extremely

computationally intensive since MCMC needs to go through the entire dataset again

with each new observation added. With a full SMC estimation procedure, adding a

new observation only requires going through one loop of the earlier SMC algorithms,

provided that the particles from the last time step were saved, which requires only
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Figure 3.4: Boxplot comparison of estimation quality between typical MCMC and
SMC runs using the same settings described (SMC is on the left).

O(N) space for inference with N particles1.

MCMC methods rely on Markov chain convergence, and as a result parallel com-

putation is typically not feasible. Advanced MCMC methods such as parallel temper-

ing requires additional implementation which is time consuming. SMC methods, on

the other hand, are parallelizable without much additional coding effort. And at any

time t on any one machine, the particles {θ(i)
t }i=1,··· ,N are approximately distributed

as the marginal posterior p(θ|y1:t). We could therefore simply group particles from

individual runs on different machines together according to their final weights to get

a better approximate of the target posterior.

Lastly, we can compute model marginal likelihoods from the particles at each time

1 This only holds for sequential inference on the marginal posterior p(θ, xt|y1:t), inference on the
full state trajectory p(θ, x1:t|y1:t) requires O(tN) space.
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Figure 3.5: Evolution of parameter posteriors for (β, α, ρ) as an SMC algorithm
progresses through the data set.

period very easily, thereby allowing us to perform model comparison sequentially as

data arrive. This could be useful as the relative performance of different models

could be time varying as demonstrated in Giacomini and Rossi (2007).

3.3 Structural vs Reduced-form

It is known to researchers that macroeconomic data is often affected by structural

instabilities. Such an environment could lead to different relative performance levels

of competing models over time, which prompted a need to be able to compare mod-

els in a sequential manner. To this end, Giacomini and Rossi (2007) proposed two

statistical tests based on local performance measures such as the Kullback-Leibler

information criterion. One test is used to analyze the model’s relative performance
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Figure 3.6: Stability study: one typical estimation run with 5000 particles on the
same simulated data set using linear policy function approximation.

over observed samples, while the other is used to monitor the model’s relative per-

formance out of sample. We will show that the SMC counterpart to the tests in

Giacomini and Rossi (2007) is a lot simpler, by virtue of the fact that we have

access to particle approximations of marginal likelihood at each time period. For

the demonstration, we used the DSGE data for the European area from Smets and

Wouters (2003).

DSGE Model for the Euro Area

Smets and Wouters (2003) (henceforth SW) developed a DSGE model of the Eu-

ropean economy with sticky prices and wages and estimated the linearized model

using MCMC sampling over the period 1970:1-1999:4 on seven key macroeconomic

variables: GDP, consumption, investment, prices, real wages, employment and the
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Figure 3.7: Stability study: another typical estimation run with 5000 particles on
the same simulated data set using linear policy function approximation.

nominal interest rate. In their model, households maximize a utility function with

goods, money and leisure over an infinite horizon subject to budget constraints, act

as price-setters in the labor market and choose how to best invest their capital stock.

Firms engage in monopolistic competition in the intermediate goods market and the

country produces a single final good used for consumption and investment by the

households. The economy is in equilibrium if supply and demand are equal in the

various markets (final goods, labor, etc). The linearized model has a total of ten

structural shock variables, six of which follow independent first order autoregressive

processes while the rest are i.i.d independent processes.

We estimated the SW DSGE model using the same detrended data from their

paper with the GB algorithm described earlier and we used the popular DYNARE
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software to solve for the model equilibriums (see the appendix for details regarding

DYNARE’s usage as applied to the DSGE model is SW). Particle degeneracy was

not a pronounced issue in this case so we use the Metropolis-Hastings kernel on all

model parameters. Table 3.2 provides a comparison between the end of sample SMC

posteriors with the MCMC posteriors from SW. As with the earlier example, more

particles are needed to obtain a tighter confidence band for SMC estimation. Figure

[fig13] shows that the average effective sample size of SMC estimation is around 30%

of the original SMC samples simulated for a large scale DSGE model such as the SW

model. Most of the parameter estimates are close to SW’s MCMC estimation results.

Certain parameters were estimated to be different than SW, for example, standard

errors for the productivity shock, labor supply shock and interest rate shock, and the

adjustment costs for investment and capital utilization. All of this is evidence that a

much larger number of particles is needed to properly visit the parameter posteriors.

SMC estimation with 1000 particles through the whole sample takes about 12 hrs

to finish on a PC with a 3Ghz Core 2 Duo processor as the procedure is quite com-

putationally intensive. It’s fortunate that computation complexity increases linearly

with number of particles, so estimation with 10,000 particles through the whole data

set would probably take around a week to finish.

Bayesian Sequential Model Comparison

SW concluded that the DSGE model fit the data as well as BVAR models since

the model marginal likelihoods of the different models have comparable magnitudes.

Their model marginal likelihoods were, however, computed over the entire sample,

as typical in a Bayesian MCMC framework. Giacomini and Rossi (2007) noted that

certain events related to the European economy that occurred during the sample

period, the creation of the European Union, for example, could have an impact over

the relative performance of DSGE and BVAR models. The frequentist tests from
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Table 3.2: Comparison of posterior quantiles between SMC results from the GB
algorithm and MCMC results from Smets and Wouters (2003).

SMC MCMC
5% 50% 75% 5% 50% 75%

σ productivity 0.0005 0.0097 0.0712 0.444 0.612 0.873
σ inflation obj. 0.0004 0.0056 0.0543 0.011 0.023 0.069
σ cons. pref. 0.1558 0.9560 1.7404 0.173 0.297 0.571

σ gov. spending. 0.0596 0.1671 0.4985 0.290 0.329 0.378
σ labor supply 0.0052 0.0364 0.3729 0.997 1.658 2.603
σ interest rate 0.0321 0.0776 0.1503 0.102 0.129 0.158
σ investment 0.0001 0.0102 0.5036 0.099 0.129 0.247

σ equity premium 0.0503 0.1047 0.2039 0.520 0.611 0.718
σ wage mark up 0.0312 0.2083 0.6230 0.246 0.285 0.331
σ price mark up 0.0424 0.0757 0.1627 0.139 0.162 0.192
ρ productivity 0.1067 0.9835 1.0000 0.712 0.828 0.912
ρ inflation obj. 0.0033 1.0000 1.0000 0.658 0.865 0.970
ρ cons. pref. 0.1861 0.6185 0.9562 0.817 0.886 0.931

ρ gov. spending 0.9973 0.9999 1.0000 0.912 0.956 0.982
ρ labor supply 0.1067 0.9835 1.0000 0.916 0.955 0.98
ρ investment 0.0014 0.9898 1.0000 0.856 0.917 0.961

investment adj cost -0.1644 0.3713 0.9354 4.321 5.974 7.973
σ consump. util. 0.3834 1.4140 2.6195 1.126 1.608 2.106
h consump. habit 0.4266 0.8630 0.9758 0.416 0.552 0.681
σ labor util. 1.0905 3.5727 6.6870 0.439 1.188 2.365

fixed cost 0.5880 1.3625 2.2390 1.199 1.487 1.835
calvo employment 0.0260 0.1994 0.6370 0.503 0.596 0.671

capt. util. adj. cost 0.0242 0.2848 0.7572 0.062 0.175 0.289
calvo wages 0.0812 0.8473 0.9977 0.690 0.758 0.817
calvo prices 0.9153 0.9918 0.9996 0.890 0.909 0.927

indexation wages 0.1067 0.9835 1.0000 0.383 0.663 0.900
indexation prices 0.1067 0.9835 1.0000 0.268 0.425 0.597

r inflation 0.0032 1.8120 3.8169 1.537 1.661 1.821
r d(inflation) -0.9020 0.0508 1.0218 0.134 0.221 0.313

r lagged int. rate 0.7600 0.9450 0.9873 0.901 0.931 0.946
r d(output) -0.2840 0.2540 1.1162 0.131 0.173 0.219
r output 0.1558 0.9560 1.7404 0.079 0.143 0.215

r ε productivity -1.1588 -0.4013 0.6628 0.043 0.086 0.137
r ε labor -1.0262 -0.1567 0.4230 0.007 0.030 0.063
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Figure 3.8: Effective sample size from SMC estimation of the SW DSGE model
using the proposed GB algorithm with 1000 particles.

Giacomini and Rossi (2007) suggests that DSGE performs comparably to BVAR(1)

and BVAR(2) for most of the dataset but outperforms both BVAR models in the last

4 years of the sample. Their study, however, showed that the pre-processing of data

in SW favors the DSGE model over the reduced-form models. When they applied

the same sequential test to data that’s rolling-sample detrended instead of sample

detrended, they found that BVAR(2) outperforms DSGE on all but a few points in

the sample.

With SMC estimation, we have at each time point t the particle approximation of

the model posterior p(xt, θ|y1:t) = 1
N

∑N
i=1 δ(xt,θ)(i) . We can use the swarm of posterior
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particles
{
x

(i)
t , θ

(i)
t

}
to approximate the marginal likelihood of the model by

p(yt+1|y1:t) ≈
1

N

N∑
i=1

p(yt+1|x(i)
t , θ

(i)). (3.19)

This allows Bayes factors to be computed at each time point in the data set as a

by-product of the SMC estimation procedure as the quantities p(yt+1|x(i)
t , θ

(i)) are

already calculated by the estimation algorithm to use as importance weights. The

Bayes factor for competing models and at time is given by

p(M1|y1:t)

p(M2|y1:t)
, (3.20)

where p(Mi|y1:t) =
∏t

k=1 p(yk|y1:k−1,Mi). Those sequentially computed Bayes factors

allow us to perform a Bayesian version of the sequential tests in Giacomini and Rossi

(2007).

We used SMC estimation results on the SW DSGE model to compare it against

with various VAR and BVAR models. We fit VAR and BVAR models with the same

seven-dimensional data from SW using rolling window MCMC with 5000 MCMC

iterations. The VAR models are estimated from the VAR likelihood with Jefferys

prior on the covariance matrix and the BVAR models are estimated with the Min-

nesota prior as in Litterman (1986), model marginal likelihoods for both VAR and

BVAR are approximated by their harmonic means. For BVAR models, we used

different values for the two hyperparameters in the Minnesota prior to investigate

the sensitivity of BVAR performance to prior choice. Those two hyperparameters

are λ, the prior standard deviation for coefficients on the first lag of the dependent

variables, and ω, the variance discount factor for coefficients on variables other than

the dependent variables.

All model comparisons exercises start from t = 35 and end at t = 118 since

we start the MCMC rolling window at t = 35. In all of our Bayes factor plots, the
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Figure 3.9: Sequential Log Bayes Factor: VAR vs SW DSGE.

Bayes factor is computed relative to the DSGE model. Figure 3.11 shows the particle

approximation of the DSGE marginal likelihoods across the data set is quite stable

for different numbers of particles used in SMC estimation.

Our model comparison results based on sequential Bayes factors tell quite a differ-

ent story from SW’s Bayesian batch model comparison. First of all, it would appear

from 3.7 that all three VAR models fit the data better than DSGE for almost all the

time points considered. In addition, the higher the vector autoregressive order, the

better model fit the respective model delivers. This is in contrary to SW’s findings,

which reported that VAR(3) performs the worst out of the VAR models. Our results

indicate that this was only true for the first 10 periods, but that VAR(3) quickly

catches up and dominates both VAR(1) and VAR(2) as well as the DSGE model

pass period 30. With BVAR models, the main finding is that relative model perfor-
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Figure 3.10: Sequential Log Bayes Factor (ω=0.99): BVAR vs DSGE.

mance is sensitive to the choice of the prior hyperparameter λ but not ω. In each of

figure 3.8, 3.9 and 3.10, ω is fixed at 0.99, 0.3 and 0.1, respectively, and λ changes

from 5 to 0.01. We can see that in each figure, all three BVAR models are chosen

in favor of the DSGE model for large values of λ. As λ decreases, DSGE begins to

catch up with the reduced-formed models. For small values of λ such as 0.01, DSGE

is chosen in favor of the BVAR models. This makes intuitive sense since λ controls

the prior variance of the VAR coefficients and small values of this parameter will

shrink coefficients toward their prior mean value, which is set to the identity matrix

for the first lag coefficients, and zeros for all other coefficients in the Minnesota prior

we used. A small value for λ will thus greatly limit the BVAR model’s explanatory

power, in which case the DSGE model can have a chance of performing on par or

even outperform BVAR models. Another interesting effect of decreasing λ is that it
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Figure 3.11: Sequential Log Bayes Factor (ω=0.3): BVAR vs DSGE.

changes the relative performance between the BVAR models also. Whereas for large

values of λ, BVAR models have similar relative model performance as VAR models,

in that higher autoregressive order delivers higher marginal model likelihoods, for

low values of λ, BVAR(1) appears to better explain the data than BVAR(2). This is

also intuitive to explain. Without constraining the coefficients with a tight prior vari-

ance, BVAR(2) will explain the data better with more parameters than BVAR(1). As

soon as coefficients are shrunk toward the prior mean, model uncertainty outweighs

explanatory power in the BVAR(2) and thus loses to BVAR(1).

The results from both comparison showed that a-theoretical models such as

VAR/BVAR perform better than DSGE across the sample. For longer samples, this

discrepancy in performance is further widened. The fact that complex structural

models fair no better than a-theoretical models perhaps shouldn’t come as a surprise
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Figure 3.12: Sequential Log Bayes Factor (ω=0.1): BVAR vs DSGE.

as it’s well known that structural models in their highly stylized form typically can’t

compete with pure statistical models in data fitting. However, while reduced form

models excel in data fitting, they cannot produce useful economic interpretations of

the data. Structural models like the DSGE, on the other hand, have economically

meaningful parameters and can provide answers to important economic questions as

well as aid in policy making.

3.4 Concluding Discussion

In this chapter we demonstrated that sequential Monte Carlo methods could be used

as a viable alternative to MCMC in the estimation of complex economic structural

models such as DSGE models. A successful SMC method for parameter estimation

requires a mixture of importance sampling/resampling and Markov chain moves.
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Figure 3.13: Stability of SMC estimation of p(yt|yt−1) from the SW-DSGE model.

The importance sampling/resampling mechanism induces parameter learning in the

particles while Markov chain moves, be it from Metropolis type kernels or exact pos-

teriors computed from conditional sufficient statistics, replenish particles lost in the

resampling step. Those two key ideas combined is what makes SMC estimation of

fixed model parameters possible. We’ve listed the many benefits of using SMC meth-

ods instead of MCMC methods, and provided an example that shows the simplicity

an usefulness of performing sequential model comparison with SMC estimations.

While it may seem like SMC estimation is more computationally intensive than

MCMC estimation, the reverse is probably the case in practice. In our computation

time comparisons, SMC has to generate posterior inference at each point in the

data whereas MCMC only generates inference at the end of the data set. A fair

comparison would be between rolling-window MCMC and SMC, since both would
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then generate the same amount of posterior information. To take full advantage of

an SMC estimation procedure, we recommend the following usage. First run the

SMC method over all available historical data with several different settings for the

number of particles. Perhaps a low, medium, and high number of particles, which

would correspond to three different calibration levels so to speak. This would take a

long time to run (around the same amount of time as rolling-window MCMC with

comparable sample sizes) but only needs to be done once. Then as new data arrives,

new inference could be made with quick updates based on estimation results from the

last period. Each new update with say, one million particles, will be much faster than

an MCMC analysis with the same number of iterations as MCMC has to traverse

through the entire data set whereas SMC doesn’t.

In summary, SMC has many practical benefits over MCMC but needs addi-

tional theoretical as well as methodological development to flourish as an estimation

method. That said, we believe that SMC estimation applied to economic models is

an exciting area of research and hope that this work will provide a fresh perspective

in the ever growing Bayesian econometric literature.
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4

SMC Estimation of a Dynamic Game

Due to the pivotal role game theory plays in fields such as industrial organization

(IO), there has been a constant stream of literature pertaining to the structural

estimation of game theoretic models over the last two decades. For an excellent

up-to-date survey on this subject, see Aguirregabiria and Mira (2004). Much of

the existing work in the area focuses on games under the incomplete information

assumption. Under the complete information setting, static games have been studied

by Bresnahan and Reiss (1990), Berry (1992), Tamer (2003), Bajari et al. (2004),

and Ciliberto and Tamer (2009). Other than Gallant et al. (2010), there appears

to be no other work on the estimation of dynamic games of complete information.

This disproportional spread in the game estimation literature can be attributed to

the relative simplicity of the two-step estimation strategy that is commonly applied

to games of incomplete information and the high computational cost of obtaining

game equilibria under the complete information setting.

Though a challenging task both conceptually and computationally, the estima-

tion of dynamic games of complete information is critical to the development of

the empirical IO literature as this class of game theoretic models better capture
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the strategic interaction between firms in market competition by allowing for un-

observed firm level heterogeneity. In this paper, I propose an alternative Bayesian

approach for the estimation of dynamic games of complete information that allows

for serially correlated unobserved endogenous state variables. I demonstrate through

application of this estimation method on a dynamic oligopolistic game of entry that

it’s more computationally efficient than the MCMC based approach used in Gallant

et al. (2010) (henceforth GHK).

Currently the most popular method for game estimation is a two-step estimation

strategy based on the CCP method from Hotz and Miller (1993). In the first stage

the econometrician backs out the conditional choice probabilities, that is the proba-

bilities that actions from some finite action set is played conditional on some finite

vector of state variables, from the reduced form of the model. In a second stage,

structural parameters are recovered by finding parameter values that best rational-

ize the choice specific value functions from the first stage. The CCP method’s main

attraction is its computational advantage over a full solution method such as the

nested fixed point algorithm used on the engine replacement model in Rust (1987).

Unlike a full solution method, the two stage estimation procedure avoids solving

repeated DPs, thereby greatly reducing computational cost. There have been sev-

eral important extensions over the original CCP method. For example, Hotz et al.

(1994) proposed a simulation-based CCP estimator that can deal with very large

state spaces, Aguirregabiria and Mira (2002) proposed a recursive CCP method that

significantly reduces finite sample bias, and Aguirregabiria and Mira (2004) showed

that the recursive CCP method also handles discrete unobserved heterogeneity. The

main drawback to the CCP class of estimators is that it’s difficult to incorporate

unobserved endogenous heterogeneity with serial correlation. One way to deal with

unobserved heterogeneity is to adopt a finite mixture model for the unobservables.

Arcidiacono and Miller (2008) uses the EM algorithm along with a finite mixture
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model to allow for serially correlated unobserved state variables. The well-known

Geweke-Hajivassilion-Keane estimator uses importance sampling simulation to ad-

dress normally distributed unobservables in discrete choice models. To the best of

my knowledge, GHK is the only work that addresses endogenous unobservables with

serial correlation in a dynamic game setting.

This chapter primarily contributes to the currently small but growing Bayesian

literature on the estimation of dynamic discrete choice models. Bayesian estimation

approaches for this class of models usually require prohibitively high computational

effort to evaluate the likelihood function for posterior inference. With an MCMC al-

gorithm, each parameter proposal requires the likelihood function to be re-evaluated,

and thus the dynamic program associated with the problem to be solved. Combine

that with a full-solution DP solver and unobserved state variables that need to be

integrated out of the likelihood, Bayesian estimation quickly becomes borderline in-

feasible. Bayesian simulations-based methods, however, are natural candidates for

the estimation of models with serially correlated unobservables. The main issue in

estimating this class of models is the high dimensional integration over the histories

of unobserved state variables in extracting either the conditional choice probabilities

in CCP methods, or the model posterior distributions in Bayesian methods. Those

high dimensional integrals can be readily approximated using Monte Carlo integra-

tion techniques. For this reason, most recent work in the estimation of dynamic

discrete choice models featuring serially correlated unobservables are Bayesian in

nature. Imai et al. (2005) and Norets (2009) use MCMC algorithms to integrate

out unobserved state variables in single agent problems. Both papers also avoid

obtaining full DP solutions by updating the Bellman equation once with each pa-

rameter proposal, thus greatly reducing computational cost. GHK uses a particle

filter to integrate out unobserved state variables in a dynamic game of entry and does

posterior inference with a random walk Metropolis-Hastings kernel, an approach sim-
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ilar to that used in Fernández-Villaverde and Rubio-Ramı́rez (2005) in estimating

a dynamic stochastic general equilibrium model. This paper utilizes an alternative

Bayesian estimation procedure based on recent developments in sequential Monte

Carlo methods to perform filtering of the latent states and parameter estimation

jointly. Chen et al. (2010) have applied this class of methods to the estimation

of dynamic stochastic equilibrium models with success. Empirical results indicate

that this is a viable estimation method for dynamic discrete choice models with a

full solution DP solver embedded. It’s possible to embed approximation-based solu-

tion methods instead for faster computation, section 3 contains more details on this

subject.

SMC based methods, otherwise known as particle filters in a pure state filtering

context, are a class of numerical methods designed to perform inference in general

state space hidden Markov models. Unlike Kalman filters, SMC methods don’t rely

on local linearization or normal shock assumptions and require only that the model

has a state space form. This flexibility is the main reason behind the ever growing

popularity of SMC methods in a diverse array of fields ranging from financial econo-

metrics to robotics. One of the primary problems SMC methods are designed for is

a filtering problem where the goal is to obtain posterior inference on the latent state

trajectories given some noisy observation. When embedded in an MCMC algorithm

for parameter estimation, as is the case in GHK, the importance weights of the filtered

particles are used to obtain an approximation of likelihood function. In this sense,

particle filters are essentially used as a Monte Carlo integrator to marginalize out the

unobserved state variables. Recent developments have shown that SMC methods are

capable of estimating fixed parameters in addition to state filtering. Practical SMC-

based methods were proposed by Liu and West (2001), Storvik (2002), Fearnhead

(2002), Gilks and Berzuini (2001), and Carvalho et al. (2010) among others. SMC

based estimation methods have several advantages over traditional MCMC based
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Bayesian methods when applied to dynamic discrete game estimation. First, SMC

methods don’t rely on Markov chain convergence and instead work on the principle

of importance sampling. For complex structural models such as dynamic games,

Markov convergence might not be geometrically ergodic (see Papaspiliopoulos and

Roberts (2008)). Indeed the MCMC chain generated using a one-move-at-a-time

scheme in GHK converges slowly and model parameters exhibit high sample auto-

correlation even at lag lengths of over 300. Second, the profile likelihood surfaces for

a dynamic game model are littered with a combination of plateaus and local hills.

In other words, it’s hard for an MCMC algorithm to explore the posterior parameter

space well. In this scenario, a well designed SMC-based procedure can visit parts of

the posterior space that an MCMC algorithm is unlikely to have visited. Designing

such an SMC algorithm is, however, a no less challenging task then coming up with

an efficient MCMC algorithm for the same class of models. Lastly, by combining the

filtering of the latent state trajectories and parameter learning in one SMC proce-

dure, the computational effort involved in estimating the structural parameters are

greatly reduced than that in an MCMC estimation routine. For the same parameter

posterior sample size N inferred from the same data set of length T , the number of

games that need to be solved in an SMC estimation procedure is of O(NT ). The

number of games that need to be solved in an MCMC estimation is of O(NMT ),

where M is the number of particles in the embedded particle filter for pure state

filtering. As the estimation of the dynamic game of entry employs full DP solutions,

which is computationally intensive to obtain, an SMC estimation can finish in a mere

fraction of the time it takes an MCMC estimation to complete.

The dynamic game of entry from GHK is an example of the type of games

SMC algorithms are capable of estimating. This entry model features cross-product

spillovers on future costs in a dynamic oligopolistic setting, which is the first of its

55



www.manaraa.com

kind1. In this model setting, firms may chose to enter a particular market even if it

will lead to a loss in that market period provided the cost spillovers from the entry

will lead to better long-run profitability in future markets. Heterogeneity of firms

that participate in this entry game is induced by serially correlated firm specific costs

that are endogenous to past entry decisions. These salient features make this entry

game a challenging model to estimate and thereby a perfect test bed for an SMC

based estimation procedure. The proposed algorithm could be applied to other dy-

namic discrete games of equal or lesser complexity as long as the model could be put

into standard state-space form and a reliable solution method for the game could be

implemented.

4.1 A Dynamic Model of Entry Decisions

4.1.1 Data

For the estimation of the dynamic entry model, I use the data set from Scott-Morton

(1999). This data set contains the entry decisions of generic drug manufacturers

between 1984 and 1994. During this period, firms can enter a market by submitting

an Abbreviated New Drug Application (ANDA). In estimating the model, the only

information needed from the data set is total market revenues and the entry decisions

of potential firms at each market opportunity. As in GHK, I only use a sub-sample

of the data covering the period between 1990 and 1994 for estimation due to the

FDA bribery scandal in 1989. Only ANDAs for generic drugs in the form of orally

ingested solids during this period are considered. This means the actual data used

for estimation consists of 40 market opportunities and 51 potential entrants. The

pre-scandal data, however, is used to recover parts of the cost structure as will be

1 Static entry games have been studied among others by Bresnahan and Reiss (1990), Bresnahan
and Reiss (1991), Berry (1992), Scott-Morton (1999), Mazzeo (2002), Seim (2006), Orhun (2006),
Zhu and Singh (2006). Dynamic entry competition have been studies among others by Hitsch
(2006), Ching (2009) and Shen (2010).
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made clear later. The ANDA openings are ordered by calendar dates in the data set.

The top four firms in descending order are Mylan, Novopharm, Lemmon and Geneva,

who entered 45%, 27.5%, 25% and 25% of the markets, respectively. Mean market

revenue in thousands of dollars is 126,901, with a standard deviation of 161,580, a

minimum of 72, and a maximum of 614,593. See Table 4.1 and 4.2 for more details

regarding this data set.

4.1.2 Model

There are I profit maximizing firms that operate over an infinite horizon t = 1, · · · ,∞.

The time index t denotes market openings, i.e., when a branded drug’s patent ex-

pires. As such, the actual elapsed time between t and t + 1 could be, and most

likely will be, different from that between t + 4 and t + 5. GHK adopts this timing

convention to mainly avoid the computational burden of identifying the exact entry

dates from data. Interested readers can see GHK for detailed reasons of this timing

convention. In the remainder, will be used to refer to market opening and calendar

time interchangeably as market openings correspond to distinct calendar dates. Let

Ait denote the entry decision of firm i at market opening t, then Ai,t ∈ {0, 1}, where

Ai,t = 1 denotes decision to enter the market. Let Nt =
∑I

i=1Ai,t denote the total

number of entering firms at time t. The firm specific costs are endogenous to past

entry decisions and random shocks. Log cost for firm i at time t evolves as follows,

cit = µc + ρc(ci,t−1 − µc)− κcAi,t−1 + ecit (4.1)

where ecit ∼ N(0, σ2
c ). The long run mean of log cost is captured by µc, ρc captures

the persistence level of the cost dynamics. The spillover effect is the increase in prof-

itability due to experience gained from market entries in the past. In this model, this

effect is captured by 0 < κc < 1, in the form of a reduction of firm specific cost due

to entry in the last market opening. Note that those parameters are not firm specific,

in other words, heterogeneity of firms arises endogenously from past entry decisions
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Table 4.1: Shown here is the post-scandal data used in the study. Entry decisions
are indicated by 1 for entry and 0 for no-entry. Total entrants show how many of
the fifty-one potential entrants entered, including the four dominant firms. Revenue
of the branded drug is that in the year before patent expiration. .

Dominant Firms
(enter = 1, not enter = 0)

Drug Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

SULIN. 1 0 1 1 7 189010
ERYTH. 0 0 0 0 1 13997
ATENO. 1 0 0 0 4 69802
NIFED. 0 1 0 0 5 302983
MINOC. 0 0 0 0 3 55491
METHO. 1 0 0 0 3 24848
PYRID. 0 0 0 0 1 2113
ESTRO. 0 0 0 0 2 6820
LOPER. 1 1 1 1 5 31713
PHEND. 0 0 0 0 1 1269
TOLME. 1 1 1 1 7 59108
CLEMA. 0 0 1 0 1 9077
CINOX. 0 0 0 0 1 6281
DILTI. 1 1 0 0 5 439125

NORTR. 1 0 0 1 3 187683
TRIAM. 0 0 0 1 2 22092
PIROX. 1 1 1 0 9 309756
GRISE. 0 0 0 0 1 11727
PYRAZ. 0 0 0 0 1 306
DIFLU. 0 0 1 0 2 96488
CARBI. 0 0 1 0 4 117233
PINDO. 1 1 0 1 7 37648
KETOP. 0 0 0 0 2 107047
GEMFI. 1 0 1 0 5 330539
BENZO. 0 0 0 0 1 2597
METHA. 0 0 0 0 1 1858
METHA. 0 0 0 1 3 4792
ALPRA. 1 1 0 0 7 614593
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Table 4.2: Continue from Table 4.1

Dominant Firms
(enter = 1, not enter = 0)

Drug Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

NADOL. 1 0 0 0 2 125379
LEVON. 0 0 0 0 1 47836
METOP. 1 1 0 1 9 235625
NAPRO. 1 1 1 1 8 456191
NAPRO. 1 1 1 1 7 164771
GUANA. 0 0 0 0 2 18120
TRIAZ. 0 0 0 0 2 71282
GLIPI. 1 0 0 0 1 189717

CIMET. 1 1 0 0 3 547218
FLURB. 1 0 0 0 1 155329
SULFA. 0 0 0 0 1 72
HYDRO. 0 0 0 0 1 8492

Mean 0.45 0.28 0.25 0.25 3.3 126901

and the stochastic dynamics of costs. As this is a game of complete information,

all firms observe each others’ costs. From the econometrician’s perspective, cost can

be decomposed into an observable component and an unobservable centered AR(1)

process:

ci,t = cu,i,t + ck,i,t (4.2)

cu,i,t = µc + ρc(cu,i,t−1 − µc) + ecit (4.3)

ck,i,t = ρcck,i,t−1 − κcAi,t−1. (4.4)

Iterating (4.4), we can see that the cumulative cost impact of past entries at market

opening t is −
∑∞

j=0 ρ
j
cκcAi,t−j−1.

The total log revenue amongst firms that enter at time t is rt, and follows the

following dynamics,

rt = µr + ert , (4.5)
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where ert ∼ N(0, σ2
r). Therefore, total log revenue is normally distributed around

the average total log revenue across firms and market openings. Strategic inter-

actions between firms are modeled for the top three2 dominant firms as equilibria

computation for more firms would be prohibitively expensive with a full solution DP

algorithm. Since the top three firms account for more than half of all market entries

within the data period considered, a three firm model can still capture significant

market dynamics within the generic drug industry. To account for the non-dominant

firms, the total revenue available to the dominant firms is Rγ
t instead of Rt, where

rt = log(Rt). This convention of using lower case to denote log-scale variables and

upper case to denote real-scale variables also applies to the cost variables. The pa-

rameter γ controls for the market share of non-dominant firms and related literature

suggests a reasonable range of between 0.908 and 1. Thus, dominant firm i’s per

period profit at time t is given by

Ait(R
γ
t /Nt − Cit). (4.6)

Dominant firm i’s objective as it participates in the entry game is to maximize the

discounted total profit over the infinite horizon, which at time t is given by

∞∑
j=0

βjAi,t+j(R
γ
t+j/Nt+j − Ci,t+j). (4.7)

Firm i would thus need to solve a dynamic program3 with the following Bellman

equation on its choice specific value function,

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) = Ait (Rγ
t /Nt − Cit) + (4.8)

βE
[
Vi(A

E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1)|Ai,t, A−i,t, Ci,t, C−i,t, Rt

]
(4.9)

where −i denotes firms other than firm i.

2 GHK estimates the model with both three and four dominant firms, and obtained very similar
parameter estimates.

3 See Rust (2006) for a discussion on how to use dynamic programming to solve dynamic games.
A more detailed treatment of the subject is given in Ljungqvist and Sargent (2000).
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The choice specific value function Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) represents firm i’s

total discounted profit from making an entry decision Ait at time t, conditional on

entry decisions made by other firms at time t and the expectation that all firms would

be making subsequent entry decisions in equilibrium based on decisions made at t.

The expectation is over the distribution of the state variables (Ci,t+1, C−i,t+1, Rt+1)

conditional on the realizations of state variables and actions profiles at time t. A

stationary pure strategy Markov perfect equilibrium of the dynamic entry game

is a best response strategy profile (AEi,t, A
E
−i,t) that satisfies the following optimal

condition

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt), ∀i, t. (4.10)

In words, no other action can give rise to a strictly higher cumulative profit for any

firm other than that firm’s equilibrium strategy, given that all competing firms play

at equilibrium as well.

As all state variables are bounded and the action sets of all players finite, Theorem

5.1 of Dutta and Sundaram (1998) guarantees the existence of equilibria for this entry

game. The equilibrium profile at market t can be solved given realizations of the

state variables (Ci,t, C−i,t, Rt). In solving the game, we would make use of the ex ante

value function, which is defined as the choice specific value function from (4.8) fixed

at the equilibrium profile AEi,t, A
E
−i,t). The ex ante value function Vi(Ci,t, C−i,t, Rt)

satisfies the following Bellman equation,

Vi(Ci,t, C−i,t,Rt) = AEi,t(R
γ
t /N

E
t − Ci,t)+ (4.11)

βE
[
Vi(Ci,t+1, C−i,t+1, Rt+1)|AEi,t, AE−i,t, Ci,t, C−i,t, Rt

]
, ∀i, t, (4.12)

where NE
t is the total number of entering firms at equilibrium. The ex ante value

function represents firm i’s total discounted profit from making an optimal entry

decision at time t, conditional on optimal entry decisions of other firms at time t and

the expectation that all firms would be making subsequent choices in equilibrium.
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4.1.3 State-Space Formulation

To apply SMC based methods to the estimation of the dynamic entry game, the

game model must be put into state-space form. Using notations from chapter

1, we have the latent state vector xt = (cu,1,t, · · · , cu,I,t), and observables yt =

(A1,t, · · · , AI,t, ck,1,t, · · · , ck,I,t, rt). Recall that the data set used for estimation only

contains the entry decisions At = (A1,t, · · · , AI,t) and log market revenue rt. Even

though the observable component of the log cost (ck,1,t, · · · , ck,I,t) is not directly

observed, we can infer their values from the observed entry choices using (4.4) as

it’s a deterministic function of the observable cost and entry choice from the last

time period. The pre-scandal data {Ai,t}0
t=−n is used in exactly this way to gen-

erate (ck,1,0, · · · , ck,I,0) for future deterministic evolution during estimation4. The

observed firm actions are deterministic conditional on (xt, rt, yt−1, θ), this means the

conditional likelihood p(At|rt, yt−1, xt, θ) is degenerate at either 0 or 1. GHK assumes

measurement error on At which is standard practice for likelihood based inference

with discrete observations. The observation equation of the dynamic game is thus a

function of At and rt and has the following decompositional form,

p(yt|xt, yt−1, θ) = p(At|rt, yt−1, xt, θ)p(rt|yt−1,xt, θ), (4.13)

where p(rt|yt−1, xt, θ) is a normal density with mean µr and standard deviation σr

from equation (4.5), and

p(At|rt, yt−1, xt, θ) =
I∏
i=1

(pa)
I(Ait=A

E
it)(1− pa)I(Ait 6=AE

it), (4.14)

where 1 − pa is the misclassification probability. One way to rationalize this mea-

surement error is by making the assumption that there is a small probability a

firm’s entry decision will not be carried out. The state equations are already given

in equations (4.2)-(4.4), with the initial state distribution p(x0|θ) being normal

4 In GHK, (4.4) is iterated over the pre-scandal data with set to zero.
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around mean µc and standard deviation σc/
√

1− ρ2
c . The model parameters are

θ = (µc, ρc, σc, κc, µr, σr, γ, β, pa).

The observation equation (4.13) is nonlinear, non-normal and embeds game the-

oretic interactions amongst the participating firms in the form of the Markov perfect

equilibrium solution AEit . Given (xt, rt, yt−1, θ), A
E
it could be obtained by solving the

Bellman equation (4.11), the details of which will be provided shortly. Of the model

parameters, (γ, β) doesn’t appear in the state-space form but affects the system

through the game solution method. Similarly in equation (4.14), the conditioning on

the latent state xt is not explicit but through the game solver. The game theoretic

component of the model essentially adds an extra layer of dependence structure be-

tween the observed entry decisions and the latent firm costs. The resulting likelihood

surface mostly resembles a step function, as different values of the latent states and

parameters can lead to the same game equilibria, and is the root cause for the slow

convergence of MCMC algorithms.

4.2 An SMC Approach to Parameter Estimation

Sequential Monte Carlo methods are flexible simulation methods designed to produce

samples from a sequence of target densities of increasing dimension, which are better

known as particle filters when applied to the filtering problem in hidden Markov

models. These methods make it possible to solve sequential inference problems with-

out making normality and/or linearity assumptions, thereby allowing researchers to

build more realistic models to capture the underlying dynamics of complex data sets.

There has been a rich development on SMC related literature in statistics and engi-

neering and it would be outside the scope of this paper to provide a detailed review

on the subject. I will start this section by first presenting a pure state filtering al-

gorithm for the entry game based on the auxiliary particle filter (APF), and then

incorporate parameter learning on top of that filtering algorithm for efficient SMC
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estimation. Smoothing algorithms are also presented, which allows researchers to

make inferences on the hidden state trajectories conditional on all available informa-

tion in the data. All presented algorithms are adaptable to other game models given

the model can be put into state-space form and a solution method for finding game

equilibria is provided.

4.2.1 State Filtering with Fixed Parameters

It’s clear that the optimal importance function (2.10) is not feasible for the entry

game for two reasons. First, the predictive function p(yt+1|xt) in qoptt+1(xt+1|x1:t) is

not available in close-form for the entry game. Second, approximating p(yt+1|xt) =∫
p(yt+1|xt+1)p(xt+1|xt)dxt+1 for the dynamic entry game using a Monte Carlo in-

tegral would involve repeated evaluations of (4.14), which in turn means more DPs

to solve. Implementing an approximate qoptt+1(xt+1|x1:t) for the dynamic game would

thus result in an insurmountable computational task. Even though use of the opti-

mal importance function is out of the question for the entry game, we can still make

use of the information when making inference at time t+1 by avoiding the bootstrap

filter.

The auxiliary filter from Pitt and Shephard (1999) adopted to the filtering of the

unobserved cost paths for the dynamic entry game is given as follows,

1. For i = 1, · · · , N , sample x
(i)
0 ∼ p(x0) and set t = 0.

2. For i = 1, · · · , N , compute look-ahead particles by µ
(i)
t+1 = E(xt+1|x(i)

t ).

3. Solve the game at market opening t+1 with the predicted latent costs µ
(i)
t+1 and

resample
{
x

(i)
t

}N
i=1

with the now available predictive weights g
(i)
t+1 ∝ w

(i)
t p(yt+1|µ(i)

t+1),

the resampled particles will be indexed by k.

4. For i = 1, · · · , N , sample new particles for the latent state x
(k)
t+1 ∼ p(xt+1|x(k)

t ).
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5. Solve the game at market opening t+1 with the newly updated latent costs x
(k)
t+1.

Compute the posterior weights w
(k)
t+1 ∝ p(yt+1|x(k)

t+1)/p(yt+1|µ(k)
t+1),

{
x

(k)
t+1

}N
k=1

weighted by
{
w

(k)
t+1

}N
k=1

is an approximate sample from p(xt+1|y1:t+1).

6. If t 6= T , set t = t+ 1 and go to step 2.

The above filtering algorithm should provide better performance when embedded in

an MCMC algorithm in place of the bootstrap filter. In the context of SMC methods,

this filtering algorithm can constitute the forward filtering component of the often

used forward-filtering-backward-sampling scheme in generating realizations from the

full smoothing distribution of the latent states.

4.2.2 Joint State Filtering and Parameter Learning

Following the developments in earlier chapters, the LW algorithm can be adapted to

the entry game as follows

1. For i = 1, · · · , N , sample x0 ∼ p(x0), θ ∼ p(θ0) and set t = 0.

2. For i = 1, · · · , N , compute look-ahead particles for the state variables by µ
(i)
t+1 =

E(xt+1|x(i)
t , θ

(i)), and new kernel locations by m
(i)
t = aθ

(i)
t + (1− a)θ̄t.

3. Solve the game at market opening t+1 with the prediction particles (µ
(i)
t+1,m

(i)
t )

and resample
{
x

(i)
t ,m

(i)
t

}N
i=1

with the now available predictive weights g
(i)
t+1 ∝

w
(i)
t p(yt+1|µ(i)

t+1,m
(i)
t ), the resampled particles will be indexed by k.

4. For i = 1, · · · , N , sample new parameter particles θ
(k)
t+1 ∼ N(·|m(k)

t , (1− a2)Vt),

sample new particles for the latent state x
(k)
t+1 ∼ p(xt+1|x(k)

t ).
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5. Solve the game at market opening t+1 with the updated states and parameters

(x
(k)
t+1, θ

(k)
t+1). The posterior weights are given by

w
(k)
t+1 ∝ p(yt+1|x(k)

t+1, θ
(k)
t+1)/p(yt+1|µ(k)

t+1,m
(k)
t ).

6. If t 6= T , set t = t+ 1 and go to step 2.

The proposed SMC method performs sequential state filtering and parameter learn-

ing in one single pass through the data, and provides posterior samples at each mar-

ket opening that approximate the marginal posterior p(xt+1, θ|y1:t+1). The method

is generally applicable to the estimation of other games as parameters don’t need to

have close-form posterior densities.

4.2.3 Particle Smoothing

The earlier SMC filtering methods provide consistent posterior inference to the

marginal filtering distributions p(xt+1|y1:t+1) and p(xt+1, θ|y1:t+1) but will fail to pro-

duce reliable inference to joint filtering distributions p(x1:t+1|y1:t+1). While this is

of no concern in the context of parameter estimation, it’s sometimes of interest to

study the latent state paths jointly after receiving all available information. Ob-

taining samples from p(x1:T |y1:T ) is referred to as a smoothing problem in the SMC

literature and is closely related to the earlier filtering problem. Smoothing algorithms

usually employ filtering results in a forward-backward recursion where filtered results

are sampled in reverse order to accommodate additional information obtained in the

forward filtering process. As we already have filtering algorithms designed for the

dynamic entry game, no special smoothing algorithm is needed. Once filtering re-

sults are available, the smoothing process doesn’t require any additional games to be

solved, thus providing an efficient way to make joint inference on x1:T conditional on

y1:T . The following is a smoothing algorithm that incorporates parameter posterior

uncertainty from Carvalho et al. (2010).
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1. Sample (θ̃, x̃T ) ∼ p(x1:T , θ|y1:T ) and set t = T .

2. For i = 1, · · · , N , compute smoothing weights w
(i)
t|t+1 ∝ p(x̃t+1|x(i)

t , θ̃).

3. Choose x̃t = x
(i)
t with probabilities proportional to w

(i)
t|t+1.

4. If t 6= 1, set t = t− 1 and go to step 2.

By fixing θ and using pure filtering results, this smoothing algorithm reduces to

the pure state smoothing algorithm in Godsill et al. (2004). Running the above

smoothing algorithm once gives one approximate realization from the full smoothing

distribution p(x1:T , θ|y1:T ). A representative approximation of the full smoothing

density can be obtained by repeating the process enough number of times.

4.2.4 Computational Issues

The above SMC resample-sample method offers substantial savings in computational

cost when compared to MCMC algorithms. MCMC estimation of dynamic structural

models involves getting parameter proposals from an outer loop (e.g., a Metropolis-

Hastings proposal density) and then filtering through the latent state variables with

the model parameter fixed at the proposal. As mentioned in section 2, the value

iteration DP solver used to find game equilibria is a computational bottleneck in any

Bayesian simulation-based estimation. The slow mixing of MCMC chains for this

class of models coupled with the embedded state filter translates to the computation

of a huge number of game solutions. Assume that the simplest bootstrap filter is

used for state filtering, then for a data set of length T and a total of M particles used

in the state filter, obtaining N MCMC posterior samples requires solving O(NMT )

games. For each parameter proposal, the states have to be re-filtered through the

data set, resulting in the computation of O(MT ) game solutions. In comparison, an

SMC method such as the one proposed in this paper requires only O(NT ) games to
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be solved to obtain N SMC posterior samples. It’s clear to see that when M = N ,

the number of games to be solved grows quadratically in the number of posterior

samples for MCMC estimation, and only linearly for SMC estimation. In practice,

MCMC methods need a much larger N than SMC methods to adequately explore the

posterior parameter space of dynamic discrete choice models due to the particularly

slow Markov chain convergence for this class of models5 , and consequently end

up solving a lot more than NMT games where N is the actual number of MCMC

posterior samples used for inference.

4.3 Results

Using the above SMC method, I estimate the dynamic entry game with three dom-

inant firms using both boundedly rational and fully rational game solutions (see

appendix B for differences between the two). I do not present estimation results for

the four dominant firm case as i) the computational cost of solving repeated games

with four players is prohibitively high (It takes almost one month to estimate a four

firm entry model with the same data set using the proposed SMC method with 4000

particles), ii) the three dominant firm model captures almost as much market dy-

namics as the four firm model does6, and iii) MCMC estimation of the four firm

model from GHK did not produce posterior modes that vary greatly from the three

firm model. In GHK, the nonlinear parameters (γ, β, pa) are fixed for more efficient

MCMC performance. SMC results that follow will include both the partial model

uncertainty case (with γ, β and pa fixed) and the full model uncertainty case (with

those parameter estimated). As particle approximations of parameter posteriors can

5 In GHK’s MCMC estimation of the dynamic entry game, 3 million MCMC steps are performed
with a one-step-at-a-time random-walk Metroplis Hastings kernel, 1 out of every 375 MCMC sam-
ples are used in actual posterior computation due to high sample autocorrelation.

6 The top three firms account for 55% of all market entries in the dataset used, whereas the top
four firms account for 60% of all market entries.

68



www.manaraa.com

be multimodal, the posterior mode might not always be a characteristic measure for

central tendency. I thus present both posterior modes and medians for comparison

purposes.

One measure of estimation quality for dynamic discrete choice models is the

classification error rate (CER), which is essentially an in-sample prediction error

measure. At any time t during the sequential estimation procedure, one can aver-

age the computed firm equilibrium action profiles conditional on the newly sampled

xt, θ) particles at step 5 of the proposed resample-sample algorithm. With a pre-

determined predictive threshold, one can use the proportion of missed predictions as

the CER. All subsequent CER results are presented with a predictive threshold of

0.5 (e.g. an observed entry with a corresponding particle equilibrium prediction of

under 0.5 would be considered a missed prediction).

4.3.1 Prior Distribution p(θ)

Table 4.3 describes the prior distributions used in the estimation, which are all uni-

form distributions with different supports. With the exception of parameter ρ, the

prior supports for all other parameters are either chosen to be non-informative or

meant to capture economically realistic and meaningful scenarios. For the uncon-

ditional mean parameters µc and µr, the proposed prior range more than covers

all possible realistic values of log revenue and log cost. For the standard deviation

parameters σc and σr, the given uniform support could be seen as appropriate a

posteriori as the estimated posteriors are well inside the prior support. The support

for κc is determined by model definition to be between 0 and 1. While κc could be

identified on this prior support, a smaller interval from 0 to 0.2 can facilitate faster

SMC sample convergence. Support for parameters γ, β, pa) are selected to capture all

possible values within an economically meaningful range, see GHK for the economic

intuitions.
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Table 4.3: Prior distribution p(θ) for the entry game.

θ p(θ)
µc Uniform(0,50)
ρc Uniform(0.75,1)
σc Uniform(0,1)
κc Uniform(0,0.2)
µr Uniform(0,50)
σr Uniform(0,5)
γ Uniform(0.9,1)
β Uniform(0.75,1)
pa Uniform(0.75,1)

The cost persistency parameter ρc can theoretically take any value between -1

and 1 to make the centered AR(1) cost process stationary. Applying the above SMC

estimation with initial particles of ρc generated uniformly from (-1,1) yields unsta-

ble estimates of the parameter. One source of the weak identifiability is the fact

that multiple parameter values can lead to the same game equilibrium solution. In

MCMC algorithms, the resulting plateaus on the likelihood surface create difficulties

in the adequate exploration of the parameter space. For SMC estimation, the eval-

uated observation equations in the form of (4.13) are used as important weights to

resample the parameter particles. The non-unique mapping from particles (xt, θ)
(i)

to equilibrium particles (AE)(i) means parameter particles that best rationalize the

data will be under represented as parameter values around those particles will have

similar importance weights. While parameter ρc appears to suffer the most from this

source of weak identifiability, its effect on the other model parameters is less pro-

nounced. A more specific cause for the low identifiability for ρc is the large estimates

of σc. The marginal posterior distribution of σc from repeated SMC estimation in

the partial model uncertainty case all center around values between 0.4 and 0.5. As

the state equations are all in log scale, such a large σc can generate cost shocks big

enough to make up for possible low cost persistence. To impose identifiability, I gen-
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Table 4.4: Effect of ρ priors on CER for the three firm prediction error model (fixed
γ, β and pa) based on 1000 particle estimation.

prior on ρ MYLAN NOVOPHARM LEMMON all firms
Uniform (-1,1) 0.175 0.275 0.25 0.2333

Uniform (-0.5,1) 0.1 0.225 0.25 0.1916
Uniform (0,1) 0.125 0.225 0.2 0.1833

Uniform (0.75,1) 0.1 0.05 0.075 0.075

erate initial particles of ρc from uniform distributions defined on different supports

and compare the resulting effect on classification errors, the results are summarized

in Table 4.4. As consistent with MCMC results from GHK, a high cost persistency

region of (0.75,1) give rise to the lowest CER. Thus I use the informed uniform inter-

val of (0.75,1) as the prior for ρc. Note that this only applies to the initial particles

of ρc and that subsequent posteriors of ρc still has the stationary support of (-1,1).

The same applies to κc if a subset of the model-defined support (0,1) is used as prior

support.

4.3.2 Boundedly Rational vs Fully Rational

The fully rational equilibrium concept should in theory provide better estimation

results in terms of lower CERs as firms explicitly take into account the misclassifi-

cation error in the observation equation (4.14) when making equilibrium predictions

about entry. This means the equilibrium action profiles returned by a fully rational

solver will have a higher chance of matching the observed actions than the bound-

edly rational solver. MCMC results from GHK does show slightly lower CERs from

estimation with the full rationality model, although parameter estimates are nearly

indistinguishable across the two solution concepts. To get a sense of how the solution

concept will affect SMC estimation of the dynamic game, models with both solution

concepts are estimated with 1000 particles. As seen from Table 4, estimation of the

boundedly rational model yields substantially higher CERs than that of the fully
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Table 4.5: Effect of game solution concept on SMC estimation with (γ, β, pa) fixed
at (0.9375,0.96875,0.9375). Presented here are posterior modes, medians and CERs
under the two solution concepts.

θ boundedly rational fully rational
post. mode post. mean post. mode post. mean

µc 9.5235 9.5371 10.5481 10.5895
ρc 0.5583 0.5570 0.5186 0.5571
σc 0.2828 0.2858 0.5892 0.4303
κc 0.0427 0.0478 0.0190 0.0234
µr 9.7290 9.7629 9.7498 9.8441
σr 1.7766 1.7829 1.6697 2.0724

CER Mylan 0.125 0.125
CER Novopharm 0.225 0.075

CER Lemmon 0.2 0.05
CER all 0.1833 0.0833

rational model and this remains to be the case when the number of particles are in-

creased. Most parameter estimates are similar, the discrepancies between estimates

for the cost shock standard deviation and the spill-over cost reduction could be due

to the low number of particles used. In conclusion, SMC estimation appears to be

more sensitive to the equilibrium concept used in solving the game than MCMC es-

timation. As SMC methods don’t rely on the convergence of a single Markov chain,

this increased sensitivity is somewhat expected. In a slow mixing Markov chain of

parameter samples, any effect the game solution concept might have on the poste-

rior distributions is essentially diluted by sample autocorrelation. Since imposing

full rationality will noticeably increase the model’s in-sample predictive power, all

subsequent results are presented on the fully rational model.

4.3.3 Partial vs Full Model Uncertainty

Table 4.6 shows the estimation summary of the dynamic entry game with parameters

(γ, β, pa) fixed at the given values in the table. All posterior information presented are

from the marginal posterior distribution at the last observation (i.e. p(θ, x40|y1:40))
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in the data set, which can be seen as equivalent to the marginal posterior from

MCMC batch estimation of the same data set. In the partial model uncertainty

case, the standard deviations for both the cost shock and the revenue shock are

estimated to be around 30% higher than that of MCMC results. The immediate

spill-over effect is estimated to be around 10%, which is slightly higher than the

7% from GHK. As mentioned earlier, the large cost shock standard deviation is a

direct cause for the low identifiability of cost persistence ρc. This is demonstrated

in the posterior trace plot of ρc in Figure 4.1. Those trace plots essentially plot out

the 95% posterior quantiles at each observation in the data since the above SMC

method generates posterior samples sequentially through observations. The rate at

which those quantiles converge can be used as a diagnostic of how well identified

the underlying parameter is. For well identified parameters such as µc and σr, their

posterior quantiles quickly converge as the SMC algorithm picks up and zeroes in

on regions of high model likelihood. For ρc however, the final 95% quantile is only

slightly smaller than the initial prior support due to weak identifiability for reasons

discussed earlier.

Estimation results of the model with full parameter uncertainty are summarized

in Table 4.7. The revenue shock standard deviation is estimated to be around 45%

higher than that of MCMC estimation while the cost shock standard deviation co-

incides with MCMC results. Posterior distribution for spill-over cost reduction is

clearly multimodal under SMC estimation, with a lower mode around the MCMC

mode from GHK for an immediate 5 − 6% cost reduction from entry in the last

market opening, and a higher mode around 14− 15% which MCMC estimation fails

to pick up after being trapped in lower mode. Notice that such a high mode for the

spill-over effect is countered by the relatively low estimate of the cost persistence ρc

at 0.73, which is noticeably lower than the MCMC mode of 0.98 in GHK. With an

average of eight market openings annually, and taking into account full model un-
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Table 4.6: Three firm SMC estimation summary with partial model uncertainty,
parameters (γ, β, pa) are fixed at (0.9375,0.96875,0.9375) and SMC results are from
the marginal posterior at the end of the data set (t = 40).

θ MCMC mode SMC mode SMC median SMC 95% CI
µc 10.05 7.2927 9.227 (6.4012 13.1523)
ρc 0.9866 0.8575 0.8466 (0.7485 0.9185)
σc 0.3721 0.5051 0.4895 (0.3827 0.6445)
κc 0.06655 0.1109 0.0932 (0.0632 0.1405)
µr 9.906 10.3077 10.3451 (10.1068 10.6106)
σr 1.591 1.9378 2.0555 (1.8065 2.3421)

CER Mylan 0.09 0.075
CER Novopharm 0.08 0.05

CER Lemmon 0.1 0
CER all 0.09 0.0417

SMC particles 3000
MCMC samples 8000

certainty, the annual cumulative cost reduction for a dominant firm that entered all

eight openings is 12% at the lower κc mode, 37% at the higher κc mode and 24% at

the posterior median. For comparison purposes with the partial model uncertainty

case, SMC estimation results gave an average cumulative cost reduction of around

41%, and MCMC results from GHK implies a 51% yearly average cost reduction.

The trace plot in Figure 4.2 again demonstrates the weak identifiability of cost per-

sistence in the full model uncertainty scenario. In contrast to ρc, the trace plots for

all other parameters show evidence of successful parameter learning from the SMC

algorithm, albeit at a slightly slower pace than the partial model uncertainty case.

All three nonlinear parameters (γ, β, pa) are estimated to be lower than the fixed

values used in GHK. SMC estimate of γ is slightly lower than the fixed calibration of

0.9375 in the partial model uncertainty scenario, which implies that non-dominant

firms have a larger share of market profit (i.e. R1−γ) when full model uncertainty

is taken into account. The discount factor β is estimated to be 0.784, much lower
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Figure 4.1: Trace plot from sequential estimation of three firm fully rational model
(fixed γ, β and pa). The three lines trace out the 95% posterior confidence interval
at each point in the data set.

than the calibrated value of 0.96875. A discount factor this low would lead to an

unrealistic annual internal rate of over 200%. Discount factors in dynamic models of

the type considered are typically hard to estimate as other parameters in the Bellman

equation (4.8) can counteract with it. For example, a low β can be countered by a

high µr or a low µc. It would be perhaps wise to leave β fixed at a value consistent

with empirical findings in similar models.

Regardless of whether the model is being estimated under partial uncertainty or

full uncertainty, it appears that the mean market revenue and the revenue shock stan-

dard deviation are consistently over estimated when compared to the MCMC modes

from GHK. To test whether the MCMC posterior modes for those two parameters

are true local modes, I re-estimate the three firm model with partial uncertainty
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Figure 4.2: Marginal posteriors at last market opening from sequential estimation
of three firm fully rational model (fixed γ, β and pa). The red vertical lines mark
the posterior modes from GHK’s MCMC estimation.

with informative priors on all parameters. The informative priors used are normal

densities centered around GHK’s posterior modes with variances of 10 MCMC stan-

dard deviations, these priors represent a strong belief that the true parameter values

are within close vicinity of the MCMC modes. If these MCMC modes are indeed

likelihood maximizing locally (say within 10 posterior std. dev.), then the resulting

SMC modes with informative priors should coincide with them. Figure 4.7 suggests

that while the MCMC modes for (µc, ρc, σc, κc) are likely local posterior modes, the

true local posterior modes for µr and σr are larger than those reported in GHK.

Specifically, SMC mode for µr is around 10.4, which is 6 posterior std. dev. away

from the MCMC mode, and around 1.75 for σr, which is 2.6 posterior std. dev.

away from the MCMC mode. Despite the seemingly small differences compared to
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Figure 4.3: Particle prediction of firm actions from sequential estimation of three
firm fully rational model (fixed γ, β and pa). The triangles denote the observed entry
decisions of the firms, the stems denote the computed particle average of equilibrium
action profiles AEit conditional on (rt, xt, yt−1, θ).

reported MCMC modes, these estimates translate to significant discrepancies in real

dollar amounts. Take the mean market revenue for example, an estimate of 10.4 for

log revenue is 65% larger than the MCMC mode of 9.9 in real dollars.

Figures 3 and 6 show that the particle average predictions of equilibrium firm

actions match accurately with reality during the sequential estimation process. The

overall classification errors are very low with a firm average CER of 0.04 for partial

model uncertainty and 0.08 for full model uncertainty. C++ implementation of the

proposed SMC procedure can estimate the three firm model with 4000 particles in

roughly 5-6 days, which is a mere fraction of the time it takes to get the MCMC

results in earlier tables.
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Table 4.7: Three firm SMC estimation summary with full model uncertainty, results
are from the marginal posterior at the end of the data set (t = 40). MCMC re-
sults for comparison is the same as that in Table 4.6, which has (γ, β, pa) fixed at
(0.9375,0.96875,0.9375).

θ MCMC mode SMC mode SMC median SMC 95% CI
µc 10.05 10.2659 10.1534 (9.4667 10.9154)
ρc 0.9866 0.7217 0.7333 (0.6428 0.8193)
σc 0.3721 0.4085 0.3642 (0.2689 0.5186)
κc 0.06655 0.0450 0.0949 (0.0378 0.2132)
µr 9.906 10.4627 10.5921 (10.2250 10.9653)
σr 1.591 2.3009 2.3285 (2.1016 2.6678)
γ 0.9375* 0.9058 0.9073 (0.9040 0.9197)
β 0.96875* 0.7847 0.7844 (0.7692 0.8213)
pa 0.9375* 0.8865 0.8879 (0.8302 0.9124)

CER Mylan 0.09 0.1275
CER Novopharm 0.08 0.075

CER Lemmon 0.1 0.05
CER all 0.09 0.0833

SMC particles 4000
MCMC samples 8000

4.3.4 Extracting Latent Cost Paths

A benefit of SMC methods is that it provides a way to generate realizations from

the full smoothing distribution, which in the context of the dynamic game, allows a

researcher to extract the latent cost paths {ci,u,t}Tt=1 conditional on all the information

contained in the data. The extracted cost paths can reveal important information

regarding the firms entry decisions and are crucial for understanding the market

share breakdown amongst the dominant firms in the industry. As mentioned earlier,

smoothing can either be performed with parameter posterior uncertainty taken into

account, or without in a traditional state smoothing setting. The former has the

advantage that we could just re-use the posterior samples from the SMC estimation

to generate realizations from the smoothing distribution, thus avoiding solving any

games in the process. The downside to this is of course the fact that the cost paths
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Figure 4.4: Trace plot from sequential estimation of three firm fully rational model
with full model uncertainty. The three lines trace out the 95% posterior confidence
interval at each point in the data set.

are unreliable during the earlier part of the sample period as the SMC algorithm

hasn’t seen enough data to pin down the parameter estimates. Figure 4.8 shows the

average of 100 realizations of the total cost paths for the three dominant firms, the

unobserved cost component is obtained by applying the smoothing algorithm with

posterior parameter uncertainty. We can see that the cost paths become stable just

prior to the market opening at t = 15. For the 26 market opening between t = 15

and the end of the sample, the leading firm Mylan is shown to have a distinctive

cost advantage over the other two leading firms. Mylan’s cumulative cost during

these 26 markets is 7.5% lower than that of Novopharm and 9.3% lower than that of

Lemmon. Mylan has a lower cost than both the other two dominant firms in 24 out

of the 26 markets. The firm with the second highest market share, Novopharm, has
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Figure 4.5: Marginal posteriors at last market opening from sequential estimation
of three firm fully rational model with full model uncertainty. The red vertical lines
mark the posterior modes from GHK’s MCMC estimation.

a competitive cost advantage over Lemmon in 17 out of those 26 markets.

To get a more complete picture on the firms’ cost structure at the cost of ne-

glecting parameter uncertainty, we can first perform state filtering whilst fixing the

model parameters at their posterior medians7. This process takes roughly the same

amount of time as it takes to perform SMC parameter estimation as games have to

be solved to evaluate the observation equation during state filtering. Once forward

filtering is completed, we can use the smoothing algorithm without parameter un-

certainty to sample the latent cost paths backwards through data. Figure 4.9 shows

the average of 100 realizations from the full smoothing distribution as well as actual

market entries by the three dominant firms. During the entire sample period, My-

7 Fixing the parameters at the posterior modes or means produces near identical smoothing results.
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Figure 4.6: Particle prediction of firm actions from sequential estimation of three
firm fully rational model with full model uncertainty. The triangles denote the
observed entry decisions of the firms, the stems denote the computed particle average
of equilibrium action profiles AEit conditional on (rt, xt, yt−1, θ).

lan’s cumulative cost is 15% lower than that of both Novopharm and Lemmon. Of

the 40 market openings, Mylan has a competitive edge in cost over both Novopharm

and Lemmon in 32 openings, and Novopharm has a cost advantage over Lemmon in

21 openings. These results solidify the earlier smoothing finding that Mylan enjoys

a substantial cost advantage to give it the competitive edge in the dynamic entry

game.

4.4 Discussion

This chapter presents an alternative SMC-based Bayesian method for the estimation

of dynamic discrete games with serially correlated latent endogenous state variables.
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Figure 4.7: Marginal posteriors at last market opening from sequential estimation
of three firm fully rational model (fixed γ, β and pa) with fully informed priors.
Initial particles for all parameters are sampled from N(θGHK , 10σ2

GHK) where θGHK
and σ2

GHK are the posterior modes and variances from GHK’s MCMC estimation.
The red verticle lines mark the posterior modes from GHK’s MCMC estimation.

The main advantages of SMC over MCMC in the estimation of dynamic discrete

choice models is three folds. First, SMC methods are more efficient. By combining

state filtering and parameter learning, the resample-sample algorithm can identify

most structural parameters from non-informative uniform priors whilst needing only

a fraction of the computational resource required in MCMC estimation of similar

models. Second, SMC methods can better explore parameter posterior spaces as

they don’t rely on Markov chain convergence. This is particularly useful in the

context of game estimation as model parameters in dynamic discrete choice models

in general are often times weakly identified. Lastly, particle smoothing can be used
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Figure 4.8: Smoothed total log costs from SMC estimation of three firm model with
full rationality (fixed γ, β and pa). The latent cost component is averaged over 100
approximate realizations from the full smoothing distribution p(x1:T , θ|y1:T ), which
takes into account parameter posterior uncertainty.

to extract the unobserved state paths from their full smoothing distribution in the

presence of model nonlinearity. In contrast, forward-filtering-backward-sampling for

MCMC are typically done in close-form, thus requiring linearity and/or normality

assumptions on the model. The proposed SMC method is flexible, and can in general

be applied to a wide variety of similar models without much further modification.

There are several directions of future work in relation to this paper. First, despite

the substantial computational improvement over MCMC estimation, SMC estimation

of the entry game is still expensive to perform, and limits studies to only model a

handful of game participants. The computational bottleneck comes from the full

DP solution method used to evaluate the observation equation. It would thus be
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Figure 4.9: Smoothed total log costs from auxiliary filter run with all parameters
fixed at SMC posterior medians of three firm model with full rationality (fixed γ, β
and pa). The latent cost component is averaged over 100 approximate realizations
from p(x1:T |y1:T ), the full smoothing distribution in a pure state smoothing context.
The solid dots mark which markets the three firms entered in reality.

worthwhile to explore potential approximate DP methods to use in conjunction with

Bayesian simulation methods. One potential candidate is artificial neural networks,

which was successfully used in Norets (2008) to approximate DP solutions in the

MCMC estimation of the bus engine replacement problem.

Another area of future work is to apply this method to other dynamic games such

as dynamic games of incomplete information. This game theoretic setting permits

richer hierarchical statistical modeling as players don’t fully observe the moves of

other players, which presents a unique challenge in the structural estimation context.
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Appendix A

Linearized SW DSGE Model

Here we provide the complete description of the linearized DSGE model for the Euro

area from Smets and Wouters (2003) used in solving the model in DYNARE, which

include the system of rational expectations equations, the vector of endogenous vari-

ables, the list of exogenous shock variables, and the vector of parameters. The lin-

earized model is characterized by the following system of linear rational expectations
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equations:

Ct =
h

1 + h
Ct−1 +

1

1 + h
Ct+1 −

1− h
(1 + h)σc

(Rt − πt+1) +
1− h

(1 + h)σc
(εbt − εbt+1) (A.1)

It =
1

1 + β
It−1 +

β

1 + β
It+1 +

ϕ

1 + β
Qt + βεIt+1 − εIt (A.2)

Qt = −(Rt − πt+1) +
1− τ

1− τ + r̄k
Qt+1 +

r̄k

1− τ + r̄k
rkt+1 + ηQt (A.3)

Kt = (1− τ)Kt−1 + τIt−1 (A.4)

πt =
β

1 + βγp
πt+1 +

γp
1 + βγp

πt−1 +
1

1 + βγp

(1− βξp)(1− ξp)
ξp

[
αrkt + (1− α)wt − εat + ηpt

]
(A.5)

wt =
β

1 + β
wt+1 +

1

1 + β
wt−1 +

β

1 + β
πt+1 −

1 + βγw
1 + β

πt +
γw

1 + β
πt−1 (A.6)

− 1

1 + β

(1− βξw)(1− ξw)(
1 + (1+λw)σL

λw

)
ξw

[
wt − σLLt −

σc
1− h

(Ct − hCt−1)− εLt − ηwt
]

(A.7)

Lt = −wt + (1 + ψ)rkt +Kt−1 (A.8)

Yt = (1− τky − gy)Ct + τkyIt + gyε
G
t = φεat + φαKt−1 + φαψrkt + φ(1− α)Lt

(A.9)

Rt = ρRt−1 + (1− ρ) [π̄t + rπ(πt−1 − π̄t) + rY Yt] + r∆π(πt − πt−1) (A.10)

+ r∆y(Yt − Yt−1)− raηat − rLηLt + ηRt , (A.11)

where variables dated at t+ 1 refer to their rational expectations. The nine endoge-

nous variables are: inflation (πt), nomial wage (wt), capital (Kt−1), value of capital

stock (Qt), investment (It), consumption (Ct), interest rate (Rt), rental rate of capi-

tal (rkt ), and labor (Lt). The exogenous shocks are: productivity shock (εat ), inflation

objective shock (π̄t), consumption preference shock (εbt), government spending shock

(εGt ), labor supply shock (εLt ), investment shock (εIt ), interest rate shock (ηRt ), eq-

uity premium shock (ηQt ), price mark-up shock (ηpt ), and wage mark-up shock (ηwt ).

Of those ten exogenous shock variables, the first six follow independent AR(1) pro-
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cesses, and the remaining four follow IID independent processes. There is a total of

thirty-four model parameters, they include the shock process parameters and those

involved in the previous equations.
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Appendix B

Solution Method for the Dynamic Entry Game

To evaluate the observation equation (4.13), the dynamic game must be solved for

AEit . As the model is defined over an infinite horizon, we would be solving for a Markov

perfect equilibrium which corresponds to solving the dynamic program characterized

by Bellman equation (4.11). The solution method I use is the same value iteration

method implemented in GHK, as such I will give a brief description of how the

method works and interested readers are directed to GHK for details of the solver

algorithm. As the term state variable is used in both the context of state-space

models and that of dynamic programming, a clarification is needed before I move

on to describe the DP solver. In the context of dynamic programming, the state

variables at time t consist of the firm specific costs (C1t, · · · , CIt) and the market

revenue Rt, these are the only information needed to solve the period-t subproblem

of the original dynamic program as the solution concept is Markov perfect. This is

slightly different from the state variables in the context of the state-space formulation

of the game model, which excludes the observation Rt. For the following solution

algorithm description, state variables refer to St = (C1t, · · · , CIt, Rt). Everywhere
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else in chapter 4, state variables refer to the firm specific costs only.

Given the log state variables st = (c1t, · · · , cIt, rt), the ex ante value functions are

approximated by an affine function V (st) = b+Bst, where V (st) = (V1(st), · · · , VI(st)).

The goal of the solver is to find values of b and B such that the affine approximation

of the ex ante value function satisfies equation (4.11). The solver works as follows

given st:

1. Start with an initial guess of V (0)(st) by setting (b(0), B(0)) to 0.

2. Obtain a set of unique state variables
{
sjt
}J
j=1

around st and compute for each

of those sjt the choice specific value function in equation (4.8) at all possible

action profiles At. In doing so, the continuation value

βE
[
V

(0)
i (AEi,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1)|Ai,t, A−i,t, Ci,t, C−i,t, Rt

]
is computed

using Gauss-Hermite quadrature and (b(0), B(0)).

3. For each sjt , compute the corresponding equilibrium action profile AEj by check-

ing the optimality condition (4.10). To deal with the possibility of multiple

equilibria, the action profiles are ranked in the order of increasing total cost,

and the action profile that satisfies (4.10) with the lowest total cost is chosen

as the equilibrium profile.

4. Denote the choice specific functions evaluated at (sjt , A
E
j ) as

V (1)(AEj , s
j
t) = (V

(1)
1 (sjt , A

E
j ), · · · , V (1)

I (sjt , A
E
j )). Using

{
V (1)(AEj , s

j
t), s

j
t

}J
j=1

as

data, update the coefficients in the affine approximation of the ex ante value

function to (b(1), B(1)) using multivariate regression.

5. Go back to step 3, and repeat the procedure until the affine coefficients con-

verge to (b(∗), B(∗)). With V (st) = b∗ + B∗st, we can now compute all choice
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specific value functions for state st and thus the equilibrium strategy profile

that corresponds to st.

Equilibrium action profile AEt computed using the above algorithm is referred to as

a boundedly rational equilibrium in GHK. Recall that in adopting the measurement

error form for the likelihood for the observed entry decisions in (4.14), we assume

that there is a small probability pa a firm will implement an entry decision contrary

to its original plan. The DP algorithm above does not take into account the fact that

equilibrium profiles might not actually be played in reality. One could account for

this misclassification explicitly in the DP algorithm by adopting the following choice

specific value function instead of (4.8),

V FR
i (Ai,t, A−i,t, Ci,t, C−i,t, Rt) = (B.1)

I∏
i=1

(pa)
I(AO

it=Ait)(1− pa)I(A
O
it 6=Ait)Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) (B.2)

where AOt = (AO1t, · · · , AOIt) is the vector of observed entry actions at time t. Equi-

librium profiles computed using (B.1) is referred to as a fully rational equilibrium

in GHK. GHK demonstrated that MCMC estimation is not sensitive to the type of

equilibrium concept used to construct the likelihood. With SMC estimation however,

the posterior distributions vary considerably depending on which solution concept is

used.

Regardless of solution type, this DP solver is the computational bottleneck during

estimation as each new MCMC proposal or SMC particle calls for multiple games to

be solved. For efficient estimation, the state space is mapped to a grid and states that

fall into the same grid space share the same coefficients in the affine approximation of

the ex ante value functions, see GHK for details regarding the grid increments. It’s

worthwhile to explore approximate DP solution methods to avoid solving repeated

DPs and greatly speed up estimation of dynamic game models such as this.

90



www.manaraa.com

Bibliography

Ackerberg, D., J. Geweke, and J. Hahn (2009), “Comments on convergence properties
of the likelihood of computed dynamic models.” Econometrica, 77, 2009–2017.

Aguirregabiria, V. and P. Mira (2002), “Swapping the nexted fixed point algorithm:
A class of estimators for discrete markov decision models.” Econometrica, 70,
1519–1543.

Aguirregabiria, V. and P. Mira (2004), “Dynamic discrete choice structural models:
A survey.” Journal of Econometrics, 156, 38–67.

Arcidiacono, P. and R. Miller (2008), “CCP estimation of dynamic discrete choice
models with unobserved heterogeneity.” Working paper, Duke University.

Aruoba, S.B., J. Fernández-Villaverde, and J.F. Rubio-Ramı́rez (2006), “Compar-
ing solution methods for dynamic equilibrium economies.” Journal of Economic
Dynamics & Control, 30, 2477–2508.

Bajari, P., H. Hong, and S. Ryan (2004), “Identification and estimation of discrete
games of complete information.” Working paper, Duke University.

Bengtsson, T., P. Bickel, and B. Li (2007), “Curse-of-dimensionality revisited: Col-
lapse of the particle filter in very large scale systems.” Technical Report.

Berry, S. (1992), “Estimation of a model of entry in the airline industry.” Economet-
rica, 60, 889–917.

Bresnahan, T. and P. Reiss (1990), “Entry in monopoly markets.” Review of Eco-
nomic Studies, 57, 531–553.

Bresnahan, T. and P. Reiss (1991), “Empirical models of discrete games,.” Journal
of Econometrics, 48, 57–81.

Carvalho, C.M., M.S. Johannes, H.F. Lopes, and N.G. Polson (2010), “Particle learn-
ing and smoothing.” Statistical Science, 25, 88–106.

Chen, H., H. F. Lopes, and F. Petralia (2010), “Smc estimation of dsge models.”
Working paper, Duke University and University of Chicago.

91



www.manaraa.com

Chib, S. and M. Srikanth (2010), “Tailored randomized block mcmc methods with
application to dsge models.” Journal of Econometrics, 155, 19–38.

Ching, A. (2009), “A dynamic oligopoly structural model for the prescription drug
market after patent expiration.” International Economic Review. Forthcoming.

Chopin, N. (2004), “Central limit theorem for sequential monte carlo and its appli-
cation to bayesian inference.” The Annals of Statistics, 32, 2385–2411.

Ciliberto, F. and E. Tamer (2009), “Market structure and multiple equilibria in
airline markets.” Econometrica, 77, 1791–1828.

Crisan, D. and A. Doucet (2002), “A survey of convergence results on particle filtering
methods for practitioners.” IEEE Transcations on Signal Processing, 50, 736–746.

Douc, R., O. Capp, and E. Moulines (2005), “Comparison of resampling schemes for
particle filtering.” In 4th International Symposium on Image and Signal Processing
and Analysis.

Doucet, A., N. de Freitas, and N. Gordon, eds. (2001), Sequential Monte Carlo
Methods in Practice. Springer-Verlag, New York.

Doucet, A. and A.M. Johansen (2008), “A tutorial on particle filtering and smooth-
ing: Fifteen years later.” Manuscript, University of British Columbia and Univer-
sity of Warwick.

Dutta, P. K. and R. K. Sundaram (1998), The Equilibrium Existence Problem in
General Markovian Games, 159–207. Cambridge University Press.

Fearnhead, P. (2002), “Markov chain monte carlo, sufficient statistics, and particle
filters.” Journal of Computational and Graphical Statistics, 11, 848–862.

Fearnhead, P. and P. Clifford (2003), “On-line inference for hidden markov models
via particle filters.” Journal of the Royal Statistical Society, 65, 887–899.

Fernández-Villaverde, J. (2009), “The econometrics of dsge models.” PIER Working
Paper 09-008.

Fernández-Villaverde, J. and J.F. Rubio-Ramı́rez (2005), “Estimating dynamic equi-
librium economies: Linear versus nonlinear likelihood.” Journal of Applied Econo-
metrics, 20, 891–910.

Fernández-Villaverde, J., J.F. Rubio-Ramı́rez, and M.S. Santos (2006), “Convergence
properties of the likelihood of computed dynamic models.” Econometrica, 74, 93–
119.

92



www.manaraa.com

Gallant, A.R., H. Hong, and A. Khwaja (2010), “Dynamic entry with cross product
spillovers: An application to the generic drug industry.” Working paper. Duke
University and Stanfor University.

Gasper, J. and K. Judd (1997), “Solving large-scale rational expectations models.”
Macroeconomic Dynamics, 1, 45–75.

Giacomini, R. and B. Rossi (2007), “Model selection and forecast comparison in
unstable environments.” Working Paper, Duke University.

Gilks, W. and C. Berzuini (2001), “Following a moving targat: Monte carlo inference
for dynamic bayesian models.” Journal of Royal Statistical Society, 63, 127–146.

Godsill, S.J., A. Doucet, and M. West (2004), “Monte carlo smoothing for nonlinear
time series.” Journal of the American Statistical Association, 99, 156–168.

Hall, R. (1971), “The dynamic effects of fiscal policy in an economy with foresight.”
Review of Economic Studies, 38, 229–244.

Hitsch, G. (2006), “An empirical model of optimal dynamic product launch and exit
under demand uncertainty.” Marketing Science, 25, 25–50.

Hotz, J. and R. Miller (1993), “Conditional choice probability and the estimation of
dynamic models.” Review of Economic Studies, 60, 497–529.

Hotz, J., R. Miller, S. Sanders, and J. Smith (1994), “A simulation estimator for
dynamic models of discrete choice.” Review of Economic Studies, 61, 265–289.

Imai, S., N. Jain, and A. Ching (2005), “Bayesian estimation of dynamic discrete
choice models.” Working paper, Concordia University, Northern Illinois University
and University of Toronto.

Johannes, M. and N.G. Polson (2008), “Exact particle filtering and learing.” Working
paper.

Judd, K.L. and S.M. Guu (1993), Perturbation solution methods for economic growth
model. New York: Springer.

Judd, K.L. and S.M. Guu (2001), “Asymptotic methods for asset market equilibrium
analysis.” Economic Theory, 18, 127–157.
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